Моделирование процессов теплообмена лазерно-нагретых наночастиц с окружающей газовой средой



Modelling of heat transfer processes of laser heated nanoparticles with gas environment

The model of heat transfer of laser heated nanoparticles in the gas environment was developed for laser induced in-candescence (LII) signals interpretation. The model take into account the nanoparticles absorption of the laser energy in the Raleigh limit conditions, particle cooling by radiation, evaporation of the particles material and conduction heat transfer with the molecules of the bath gas. The known temperature dependences of the heat capacity and density of the soot and bulk iron were used for the calculations for carbon and iron nanoparticles. The particle diameters log-normal distribution function was applied to calculate the particle thermo radiation. On the base of the model developed the program code was created for mean particle diameter extraction from experimental incandescence signals. The results of nanoparticle sizing, obtained by LII, were compared with the electron microscopy data and a good agreement both in count median diameter and standard deviation were found.


В работе проведено моделирование процессов лазерного нагрева и последующего охлаждения наночастиц в газовой среде. Детально проанализирован процесс поглощения лазерной энергии наночастицами в пределе Рэлея с учетом временного и пространственного распределения энергии в лазерном пучке, а так же охлаждение при столкновениях наночастиц с молекулами окружающего газа в свободно-молекулярном режиме и потери энергии наночастицами в процессе их испарения и радиационного теплообмена. На основе развитой модели создано программное обеспечение для анализа и интерпретации полученных в эксперименте сигналов теплового излучения лазерно-нагретых наночастиц (лазерно-индуцированной инкандесценции) и определения их текущих размеров. Результаты работы могут быть применены для создания диагностического комплекса по мониторингу загрязнений окружающей среды и средств контроля при производстве нанопорошков.

наночастицы, теплообмен, лазерный нагрев, моделирование процессов


1. Melton L.A. Soot diagnostics based on laser heating // Appl. Opt. V. 23. 1984. P. 2201.
2. Vander Wal R.L., Dietrich D.L. Laser-induced incandescence applied to droplet combustion // Appl. Opt. V. 34. 1995. P. 1103.
3. Ni T., Pinson J.A., Gupta S., Santoro R.J. Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence // Appl. Opt. V. 34. 1995. P. 7083.
4. Snelling D.R., Thomson K.A., Smallwood G.J., Gulder O.L. Two-dimensional imaging of soot volume fraction in lami-nar diffusion flames // Appl. Opt. V. 38. 1999. P. 2478.
5. Choi M.Y., Jensen K.A. Calibration and correction of laser-induced incandescence for soot volume fraction measurements // Combustion and Flame. V. 112. 1998. P. 485.
6. Vander Wal R.L., Ticich T.M., Stephens A.B. Can sootprimary particle size be determined using laser-induced incandescence? // Appl. Phys. B: Lasers Opt. V. 67. 1998. P. 115.
7. Appel J., Jungfleisch B., Marquardt M., Suntz R., Bockhorn H. Assessment of soot volume fraction from laser-induced incandescence by comparison with extinction measurements in laminar, premixed, flat flames // Proc. 26th Symposium on Combustion. 1996. P. 2387.
8. Tekasakul P., Loyalka S.K. Evaporation from non-spherical particles: the equivalent-volume and inscribed sphere approximations for nearly spherical particles // Aerosol Science. V. 33. 2002. P. 307.
9. Snelling D.R., Liu F., Smallwood G.J. and Gülder Ö.L. De-termination of the soot absorption function and thermal accommodation coefficient using low fluence LII in a laminar coflow ethylene diffusion flame // Combustion and Flame, V. 136. 2004. P. 180.
10. Liu F., Daun K.J., Snelling D.R., Smallwood G.J. Heat conduction from a spherical nano-particle: status of modeling heat conduction in laser-induced incandescence // Appl. Phys. B. V. 83. 2006. P. 355.
11. Filippov A.V., Rosner D.E. Energy transfer between an aerosol particle and gas at high temperature ratios in the Knudsen transition regime // J. Heat Mass Transf. V. 43. 2000. P. 127.
12. Schulz C., Kock B.F., Hofmann M. Laser-induced incandescence: resent trends and current questions // Appl. Phys. B. V. 83. 2006. P. 333.
13. Eremin A.V., Gurentsov E.V., Kock B., Schulz Ch. Influence of the bath gas on the condensation of supersaturated iron atom vapour at room temperature // Journal of Physics D. V. 41. 2008. P. 521.
14. Kock B., Kayan C., Knipping J., Ortner H.R., Roth P. Comparison of LII and TEM Sizing During Synthesis of Iron Particle Chains // Proc. of the Combustion Institute. V. 30. 2004. P. 1689.
15. Smallwood G.J., Snelling D.R., Liu F., Gulder O.L. Clouds Over Soot Evaporation: Errors in Modeling Laser-Induced Incandescence of Soot // Transactions of the ASME. V.123. 2001. P. 814.
16. Michelsen H.A. Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles // J. Chem. Phys. V. 118. 2003. P. 7012.
17. Leider, H.R., Krikorian, O.H., Young, D.A. Thermodynamic Properties of Carbon up to the Critical Point // Carbon. V. 11. 1973. P. 555.
18. Köylü Ü.Ö. Quantitative analysis of in situ optical diagnostics for inferring particle/aggregate parameters in flames: Implications for soot surface growth and total emissivity // Combustion and Flame V. 109. 1996. P. 488.
19. Köylü Ü.Ö. and Faeth G.M. Spectral extinction coefficients of soot aggregates from turbulent diffusion flames // J. Heat Transfer. V. 118. 1996. P. 415.
20. Chase M.W., Davies C.A., Downey J.R., et all. JANAF Thermochemical tables // J. Phys. Chem. Ref. V. 14. 1985.
21. Карасев Б.В. Логарифмически нормальное распределение // Природа. № 11. 1995. С. 41.