On the use of two forms of the energy conservation equation for the interpretation of experimental data from aerodynamic experiments
The results of numerical modeling of shock-wave interaction near a surface with a generatrix break are presented for bodies of three configurations, obtained on unstructured low-dimensional tetrahedral meshes. An algorithm for numerically integrating the Navier-Stokes equations is implemented and described. This algorithm includes finite-volume discretization and the use of two alternative formulations of the energy conservation equation—the total specific energy equation and the internal energy equation. Solutions obtained using both formulations are compared, their sensitivity to mesh effects is analyzed, and the characteristics near the surface of the bodies with a generatrix break are reproduced. The results are compared with experimental data.
: nonequilibrium radiation of strong shock waves, spectral emissivity of diatomic molecules, emissivity averaged over the rotational structure of electronic-vibrational-rotational transitions.
поверхности с изломом образующей для тел трех конфигураций, полученные на неструктурированных тетраэдральных сетках малой размерности. Реализован и описан алгоритм численного интегрирования системы уравнений Навье-Стокса, включающий дискретизацию по методу конечных объемов и использование двух альтернативных формулировок уравнения сохранения энергии – уравнения полной удельной энергии и уравнения внутренней энергии. Проведено сопоставление решений, полученных при использовании обеих формулировок, анализ чувствительности к сеточным эффектам и воспроизведения характеристик вблизи поверхности исследуемых тел с изломом образующей. Проведено сравнение полученных результатов с экспериментальными данными.
двойной конус, цилиндр с юбкой, уравнения Навье-Стокса, уравнение сохранения полной удельной энергии, уравнение сохранения удельной внутренней энергии, метод конечного объема
1. Kussoy M.I., Horstman C.C. An Experimental Documentation of a Hypersonic Shock-Wave Turbulent Boundary Layer Interaction Flow – With and Without Separation// NASA TM X-62,412. 1975. 65 p. 2. Settles G., Dodson L. Hypersonic Shock/Boundary-Layer Interaction Database//AIAA 91-1163. 1991. 11 p. 3. Holden M., Moselle J., Sweet S.J., Martin S. A Database for Aerothermal Measurements in Hypersonic Flow for CFD Validation//AIAA 96-4597. 1996. 63 p. 4. Holden M.S., Wadhams T.P., Harvey J.K., Candler G.V. Comparison between Measurements in Regions of Laminar Shock Wave Boundary Layer Interaction in Hypersonic Flows with Navier-Stokes and DSMC Solutions. RTO-TR-AVT-007-03. 2006. 56 p. 5. Chanetz B., Benay R., Bousquet J.-M., Bur R., Pot T., Grasso F., Moss J. Experimental and Numerical Study of the Laminar Separation in Hypersonic Flow//Aerospace Science and Technology. 1998. Vol. 2. No. 3. P. 205–218 6. Боровой В.Я., Егоров И.В., Мошаров В.Е., Скуратов А.С., Радченко В.Н. Экстремальный нагрев тел в гиперзвуковом потоке. Газодинамические явления и их характеристики. М.: Наука, 2018. 388 с. 7. Grasso F., Marini M. Analysis of Hypersonic Shock-Wave Laminar Boundary Layer Interaction Phenomena//Computers and Fluids. 1996. Vol. 25. No. 6. P. 561–581. 8. Moss J.N., Olejniczak J. Shock-Wave/Boundary-Layer Interactions in Hypersonic Low Density Flows. AIAA 98-2668. 19 p. 9. Olejniczak J., Candler G.V., Hornung H.G. Computation of Double-Cone Experiments in High Enthalpy Nitrogen// AIAA 97-2599. 1997. 11 p. 10. Wright M., Sinha K., Olejniczak J., Candler G., Magruder T., Smits A. Numerical and Experimental Investigation of Double-Cone Shock Interactions// AIAA J. 2000. Vol. 38. No. 12. P.2268–2276. 11. Gnoffo P.A. CFD Validation Studies for Hypersonic Flow Prediction//AIAA 2001-1025. 2001. 13 p. 12. Candler G.V., Nompelis I., Druguet M.-C. Navier-Stokes Predictions of Hypersonic Double-Cone and Cylinder-Flare Flow Fields//AIAA 2001-1024. 2001. 10 p. 13. Wang W.-L., Boyd I.D. Particle and Continuum Computations of Hypersonic Flow Over Sharp and Blunted Cones//AIAA 2001-2900. 2001. 12 p. 14. Roy C., Bartel T., Gallis M., Payne J. DSMC and Navier-Stokes Predictions for Hypersonic Laminar Interacting Flows//AIAA 2001-1030. 2001. 14 p. 15. Roy C.J., Gallis M.A., Bartel T.J., Payne J.L. Navier-Stokes and DSMC Simulations for Hypersonic Laminar Shock-Shock Interaction Flows//AIAA 2002-0737. 2002.16 p. 16. Gaitonde D., Canupp P., Holden M. Heat Transfer Prediction in a Laminar Hypersonic Viscous/Inviscid Interaction// Journal of Thermophysics and Heat Transfer. 2002. Vol. 16. No. 4. pp. 481–489. 17. D’Ambrosio D., Numerical Prediction of Laminar Shock/Shock Interactions in Hypersonic Flow// J. Spacecraft Rockets. 2003. Vol. 40. No. 2. P.153–161. 18. Боровой В.Я., Егоров И.В., Скуратов А.С., Струминская И.В. Взаимодействие косого скачка уплотнения с пограничным и высокоэнтропийными слоями плоской пластины//Изв. РАН МЖГ. 2005. №6. С.89-106. 19. Surzhikov, S.T. Numerical Simulation of Shock-Wave Interaction with a Laminar Boundary Layer in a Hypersonic Flow around Models with a Kink in the Generatrix. Fluid Dynamics. 2022. Vol.57. Suppl. 1. P.S97-S116. 20. Knight D., Longo J., Drikakis D., Gaitonde D., Lani A., Nompelis I., Reimann B., Walpot L. Assessment of CFD Capability for Prediction of Hypersonic Shock Interactions// Prog. Aerospace Sci. 2012. Vol. 48. P. 8–26. 21. Knight D., Van H., Panaras A., Zheltovodov A. RTO WG 10: CFD Validation for Shock Wave Turbulent Boundary Layer Interactions //AIAA 2002-0437. 2002. 30 p. 22. Knight D. RTO WG 10: Test Cases for CFD Validation of Hypersonic Flight//AIAA 2002-0433. 2002. 25 p. 23. Knight D., Chazot O. et al. Assessment of predictive capabilities for aerodynamic heating in hypersonic flow// Progress Aerospace Sciences. 2017. Vol.60. P.39-53. 24. Белоцерковский О.М., Давыдов Ю.М. Метод крупных частиц в газовой динамике. М., Наука, 1982. 25. Годунов С.К. Разностный метод численного расчёта разрывных решений уравнений гидродинамики//Матем. сб. 1959. Т.89. №3. С.271–306. 26. Liou M. A sequel to AUSM: AUSM+//Journal of Computational Physics. 1996. Vol.129. P.364–382. 27. Zheleznyakova, A.L. and Surzhikov, S.T., Calculation of a hypersonic flow over bodies of complex configuration on unstructured tetrahedral meshes using the AUSM scheme, High Temp., 2014, vol. 52, no. 2, pp. 271–281. 28. Волков К.Н., Емельянов В.Н. Вычислительные технологии в задачах механики жидкости и газа. М.: Физматлит. 2012. 468 с. 29. Самарский А.А. Введение в численные методы. М. Наука. 1982. 286 c. 30. Краснов Н.Ф. Аэродинамика. Ч.I. Основы теории. Аэродинамика профиля и крыла. (4-е изд.). М.: Издательство URSS. 2010. 496 с. 31. Anderson, D., Tannehill, J.C., Pletcher, R.H., Munipalli, R., & Shankar, V. (2020). Computational Fluid Mechanics and Heat Transfer (4th ed.). CRC Press. 792 p.