Study of some features of explosive fragmentation of liquid bismuth during its contact with water
The paper presents results of an experimental study on the explosive interaction of 3 g and 10 g droplets and jets of molten bismuth with water within a range of initial melt temperatures T0 = 600 – 800 °C. High-speed video recording revealed that explosive (process duration less than 1 ms) breakup of liquid bismuth droplets occurs both upon contact with the free surface of the coolant under conditions of partial submersion in water, as well as within the bulk volume. Analysis of measured pressure oscillations in the water medium showed no dependence of their amplitude on the initial temperature or mass of the droplet. Numerical simulations and experimental results indicate higher values of pressure and acoustic energy generated during underwater explosions of bismuth droplets compared to explosions at the surface.
В работе представлены результаты исследования процессов взрывного взаимодействия капель и струй расплавленного висмута массой 3 г и 10 г с водой в интервале значений начальных температур расплава T0 = 600 – 800оС. С помощью скоростной видеосъёмки установлено, что взрывное (длительность процесса менее 1 мс) разрушение капли жидкого висмута наблюдается как при контакте со свободной поверхностью охладителя в условиях ее частичного погружения в воду, так и в объеме. Анализ измеренных пульсаций давления в водной среде показал отсутствие зависимости их амплитуды от начальных значений температуры и массы капли. Результаты численных расчетов и экспериментов указывают на бОльшие значения давления и акустической энергии, которые генерируются при подводном взрыве капель висмута, по сравнению со взрывами на поверхности.
1. Berthoud G. Vapor explosions //Annual Review of Fluid Mechanics. 2000. Vol. 32. no. 1, pp. 573-611. doi.org/10.1146/annurev.fluid.32.1.573 2. Мелихов В. И., Мелихов О. И., Якуш С. Е. Гидродинамика и теплофизика паровых взрывов. М.: ИПМех РАН, 2020. 276c. 3. Melikhov V. I., Melikhov O. I., Yakush S. E. Thermal interaction of high-temperature melts with liquids // High Temperature. 2022. Vol. 60. n. 2. pp. 252-285. doi.org/10.1134/S0018151X22020274 4. Fletcher D. F., Theofanous T. G. Heat transfer and fluid dynamic aspects of explosive melt–water interactions // Advances in heat transfer. 1997. Vol. 29. pp. 129–213. doi.org/10.1016/S0065-2717(08)70185-0 5. Shen P., Zhou W., Cassiaut-Louis N., Journeau C., Piluso P., Liao Y. Corium behavior and steam explosion risks: A review of experiments //Annals of Nuclear Energy. 2018. Vol. 121. pp. 162–176. doi.org/10.1016/J.ANUCENE.2018.07.029 6. Ivochkin Y. P., Yudin S. M., Borodina T. I. Specific Features of the Breakup of Hot Liquid Metal Droplets Falling into Cold Water // Technical Physics. 2024. Vol. 69. no.10. pp. 2517–2526. doi.org/10.1134/S1063784224700828 7. Deng Y. et al. An Experimental study on steam explosion of multiple droplets in different chemical solutions // International Journal of Heat and Mass Transfer. 2024. Т. 226. С. 125477. doi.org/10.1016/j.ijheatmasstransfer.2024.125477 8. Vavilov S. N., Vasil’ev N. V., Zeigarnik Y. A. Vapor explosion: Experimental observations // Thermal Engineering. 2022. Vol. 69. n. 1. pp. 66-71. https://doi.org/10.1134/S0040601521110070 9. Long–G. Explosion of molten aluminum in water // Metal. Prog. 1957. no. 71. pp. 107–112. 10. Witte L.C., Cox J.E., Bouvier J.E. The vapor explosions // J. Metals. 1970. Vol. 22. no 2. pp. 39–44. doi.org/10.1007/BF03355937 11. Corradini M.L., Kim B.J., Oh M.D. Vapor explosions in light water reactors: a review of theory and modeling //Progress in Nuclear Energy. 1988. Vol. 22. n. 1. pp. 1–117. doi.org/10.1016/0149-1970(88)90004-2 12. Wang C., Wang Ch., Chen B., Li M., Shen Z. Fragmentation regimes during the thermal interaction between molten tin droplet and cooling water // International Journal of Heat and Mass Transfer. 2021. Vol. 166. pp. 120782. doi.org/10.1016/j.ijheatmasstransfer.2020.120782 13. Song J., Wang C., Chen B., Li M., Shen Z., Wang Ch. Phenomena and mechanism of molten copper column interaction with water //Acta Mech. 2020. Vol. 231. pp. 2369–2380. doi.org/10.1007/s00707-020-02667-x 14. Simons A., Bellemans I., Crivits T., Verbeken K. The effect of vapour formation and metal droplet temperature and mass on vapour explosion behaviour // International Journal of Heat and Mass Transfer. 2022. Vol. 196. pp. 123289. doi.org/10.1016/j.ijheatmasstransfer.2022.123289 15. Vasil’ev, N. V., Vavilov, S. N., Zeigarnik, Y. A., Lidzhiev, E. A. Experimental Studies of Phenomena Occurring during Vapor Explosion Triggering // Thermal Engineering. 2024. Vol. 71. n. 7. pp. 600-607. doi.org/10.1134/S0040601524700113 16. Deng, Y., Guo, Q., Xiang, Y., Fang, D., Komlev, A., Bechta, S., Ma, W. An experimental study on the effect of coolant salinity on steam explosion // Annals of Nuclear Energy. 2024. Vol. 201. pp. 110420. doi.org/10.1016/j.anucene.2024.110420 17. Избранные труды АО «ГНЦ РФ – ФЭИ» / Отв. ред. А.А. Говердовский. Обнинск, 2021. 463 с. 18. Tan S. J. et al. Experimental investigation on the characteristics of molten lead–bismuth non-eutectic alloy fragmentation in water // Nuclear Science and Techniques. 2022. Vol. 33. no. 9. pp. 115. doi.org/10.1007/s41365-022-01097-9 19. Cheng, H., Chen, X., Ye, Y., Cheng, S. Systematic experimental investigation on the characteristics of molten lead-bismuth eutectic fragmentation in water // Nuclear Engineering and Design. 2021. Vol. 371. pp. 110943. doi.org/10.1016/j.nucengdes.2020.110943 20. Kouraytem N., Li E. Q., Thoroddsen S. T. Formation of microbeads during vapor explosions of Field's metal in water // Physical Review E. 2016. Vol. 93. n. 6. pp. 063108. doi.org/10.1103/PhysRevE.93.063108 21. Li, M., Chen, L., Liu, Z., Shen, Z., Wang, C. Fragmentation and solidification of fuel–coolant interaction of columnar molten iron and water // Journal of Thermal Analysis and Calorimetry. 2023. Vol. 148. n. 20, pp. 10897-10906. doi.org/10.1007/s10973-023-12419-3 22. Manickam, L., Qiang, G., Ma, W., Bechta, S. An experimental study on the intense heat transfer and phase change during melt and water interactions. //Experimental Heat Transfer. 2019. Vol. 32. n. 3. pp. 251-266. doi.org/10.1080/08916152.2018.1505786 23. Żyszkowski W. Experimental investigation of fuel-coolant interaction // Nuclear Technology. 1977. Vol. 33. n. 1. pp. 40-59. doi.org/10.13182/NT77-A31762 24. Sa R., Takahashi M., Moriyama K. Study on fragmentation behavior of liquid lead alloy droplet in water // Progress in Nuclear Energy. 2011. Vol. 53. n. 7. pp. 895–901. doi.org/10.1016/j.pnucene.2011.05.003 25. Баум Ф. А., К.П. Станюкович, Б.И. Шехтер. Физика взрыва. Москва: Издательство физико – математической литературы, 1959. 801с. 26. Кедринский В. К. Гидродинамика взрыва: эксперимент и модели. Новосибирск: Издательство СО РАН, 2000. 435с. 27. Cole R. H., Weller R. Underwater explosions // Physics Today. 1948. Vol. 1. n. 6. pp. 35. doi.org/10.1063/1.3066176 28. Stebnovskii, S.V., Chernobaev, N.N. Energy threshold for impulsive failure of a liquid volume // Appl Mech Tech Phys. 1986. Т. 27. № 1. С. 57–61. doi.org/10.1007/BF00911120 29. Zhao Z., Poulikakos D., Glod S. Pressure and power generation during explosive vaporization on a thin-film microheater // ASME International Mechanical Engineering Congress and Exposition.