Апробация методики моделирования условий образования конденсационных следов самолетов на основе данных зондирования атмосферы



Approbation of the methodology for modeling the conditions of formation of condensation trails of aircraft based on atmospheric sounding data

The purpose of this work is to test the methodology for modeling the conditions of formation of aircraft condensation trails (ACT), taking into account its application to regional climatic conditions. Examples of the formation of ACT based on known data from flight experiments are analyzed. An analysis of the conditions for the formation of ACT in the 1970s and 2010s in the Omsk and Moscow regions is carried out using a quantitative criterion for the theoretically possible maximum supersaturation of water vapor in an aircraft engine jet. The characteristics of aircraft engines of the D-30 and CFM56 families, which were widely used during these periods, were used for the estimates. Using the regional data averaged over 3 years from radiosonde observations of the atmosphere, conclusions were drawn about climate changes and the difference in the conditions of formation of ACT in the Omsk and Moscow regions. To control the influence of aviation on the formation of cirrus clouds and the radiation balance of the atmosphere, an approach has been proposed to assess the conditions for the formation of ACT based on current atmospheric sounding data in the region.

aircraft engine, axisymmetric nozzle, aircraft condensation trail, impact of aviation on the environment, heat transfer and jet gas dynamics


Том 26, выпуск 4, 2025 год



Целью данной работы является апробация методики моделирования условий образования конденсационных следов самолетов (КСС) с учетом ее применения к региональным климатическим условиям. Проанализированы примеры формирования КСС на основе известных данных летных экспериментов. Делается анализ условий формирования КСС в 1970-х и 2010-х годах в регионах Омск и Москва с помощью количественного критерия теоретически возможного максимального перенасыщения водяного пара в струе авиационного двигателя. Для оценок использованы характеристики авиационных двигателей семейств Д-30 и CFM56, которые массово использовались в эти периоды. С использованием осредненных за 3 года региональных данных радиозондовых наблюдений атмосферы сделаны выводы о климатических изменениях и различии условий образования КСС в регионах Омск и Москва. Для управления влиянием авиации на образование перистой облачности и радиационный баланс атмосферы предложен подход к оценке условий образования КСС на основе текущих данных зондирования атмосферы в регионе.

авиационный двигатель, осесимметричное сопло, конденсационный след самолета, влияние авиации на окружающую среду, теплообмен и газодинамика струи


Том 26, выпуск 4, 2025 год



1. Апраксин Д.В. О методике моделирования условий образования конденсационных следов самолетов // Физико-химическая кинетика в газовой динамике. 2025. Т.26, вып. 3.
URL: http://chemphys.edu.ru/issues/2025-26-3/articles/1183/
2. Иванова А.Р. Влияние авиации на окружающую среду и меры по ослаблению негативного воздействия // Труды Гидрометцентра России. 2017. Вып. 365. С. 5-14.
3. Приложение 16 к Конвенции о Международной гражданской авиации // Охрана окружающей среды // Эмиссия авиационных двигателей. ИКАО. 2023. Т. 2, вып. 5.
4. ICAO Engine Exhaust Emissions Databank // ICAO Doc. № 9646-AN/943. First Edition. 1995. (Implementation of Issue №30, 23 July 2023).
URL: https://www.easa.europa.eu/en/domains/environment/icao-aircraft-engine-emissions-databank
5. Lee D.S., Fahey D.W., Skowron A., Allen M.R., Burkhardt U., Chen Q. et al. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018 // Atmos. Environ. 2021. Vol. 1, 244 p.
6. Dischl R., Kaufmann S., Voigt C. Regional and Seasonal Dependence of the Potential Contrail Cover and the Potential Contrail Cirrus Cover over Europe // Aerospace. 2022. Vol. 9, 485 p.
7. Dedesh V.T., Grigoriev M.A., Zamyatin A.N., Zhelannikov A.I. Calculation assessment of formation, existence and destruction of aircraft condensation trails with account of interaction with wake vortices // Int. Conference on Environmental Science and Biological Engineering (ESBE). 2014. Beijing. Pp. 17-23.
8. Vid V.I., Dedesh V.T., Kiose S.N. et al. Ecological Optimization of Jet Aircraft Flights In View Of Contrails and Contrails Cirrus formation // ICASE Paper 2014_0400.
9. Weather Maps and Soundings // University of Wyoming, College of Engineering, Department of Atmospheric Science.
URL: https://weather.uwyo.edu/upperair/sounding.html
10. Meyer R., Mannstein H., Meerkötter R., Wendling P. Contrail and Cirrus Observations over Europe from 6 Years of NOAA-AVHRR Data // Scientific conference paper. 2002.
URL: https://elib.dlr.de/9809/1/Meyer2002c.pdf
11. Sfîcă L, Beck C, Nita A.I, Voiculescu M, Birsan M.V, Philipp A. Cloud cover changes driven by atmospheric circulation in Europe during the last decades // Int. J. Climatology №41 (Suppl. 1). 2021. Pp. 2211–2230.
12. Chernokulsky A., Mokhov I. and Nikitina N. Winter cloudiness variability over Northern Eurasia related to the Siberian High during 1966–2010 // Environmental research letters. 2013. Vol. 8. № 4. Pp. 12-45.
13. Schneider E., Czech H., Popovicheva O. et al. Mass spectrometric analysis of unprecedented high levels of carbonaceous aerosol particles long-range transported from wildfires in the Siberian Arctic // Atmos. Chem. Phys. 2024. № 24. Pp. 553–576.
14. Саенко А.Г. Прозрачность конденсационных следов и перистых облаков: ДИССЕРТАЦИЯ на соискание ученой степени кандидата физико-математических наук. Санкт-Петербург, Российский Государственный Гидрометеорологический Университет, 2006.
15. Schumann U. Formation, properties and climatic effects of contrails // Comptes Rendus. Physique. 2005. Vol. 6. № 4-5. Pp. 549-565.
16. Schumann U. A Contrail Cirrus Prediction Model // Geoscientific Model Development. 2012. Vol. 5. № 3. Pp. 543–580.
17. Huang J. A Simple Accurate Formula for Calculating Saturation Vapor Pressure of Water and Ice // J. Applied Meteorology and Climatology. 2018. Vol. 57. № 6. Pp. 1265-1272.
18. Алдухов О.А., Черных И.В. Методы анализа и интерпретации данных радиозондирования атмосферы. 2013. Т.1. Обнинск.
19. Noppel F., Singh R. Overview on Contrail and Cirrus Cloud Avoidance Technology // Journal of Aircraft. 2007. Vol. 44. № 5. Pp. 1721-1726.
20. Дедеш В.Т., Киосе С.Н., Вид В.И., Кагарманов Р.Л., Воронич И.В., Павлова Э.Г., Тенишев Р.Х., Румянцева Г.П., Степанова С.Ю. Патент RU 2532995 C1 от 20.11.2014. Правообладатель ЛИИ им. М.М. Громова.