Анализ применимости квазиодномерного подхода для определения газодинамических параметров в ударной трубе с отражающим соплом



Analysis of the applicability of a quasi-1D approach for determining gasdynamic parameters in a reflected shock tunnel

This article presents the results of the analysis of the applicability of the quasi-one-dimensional calculation of the main gasdynamic processes in a reflected shock tunnel for the tasks of experiment planning. Estimates of the test time, duration of the nozzle start-up, and parameters of the supersonic gas flow at the point of model installation are obtained. Results of the calculation were compared with measurements carried out on the Large Shock Tube of the Ioffe Institute. The applicability of 1D approach has been shown.

reflected shock tunnel, experiment, measurements, one-dimensional model


Том 26, выпуск 3, 2025 год



Представлены результаты анализа применимости квазиодномерного расчета основных газодинамических процессов в ударной трубе с отражающим соплом для задач планирования эксперимента. Получены оценки рабочего времени, длительности запуска сопла, параметров сверхзвукового потока газа в месте установки модели. Сравнение результатов расчета с измерениями, проведенными на Большой ударной трубе ФТИ им. А.Ф. Иоффе показало применимость данного подхода.

ударная труба, эксперимент, измерения, одномерная модель


Том 26, выпуск 3, 2025 год



1. P. Reynier. Survey of high-enthalpy shock facilities in the perspective of radiation and chemical kinetics investigations // Progress in Aerospace Sciences. 2016. Vol. 85. P. 1-32.
2. G. Sangdi, H. Olivier. Capabilities and limitations of existing hypersonic facilities // Progress in Aerospace Sciences. 2020. Vol. 113. 100607.
3. P. Collen, L.J. Doherty, S.D. Subiah, T. Sopek, I. Jahn, D. Gildfind, R. Penty Geraets, R. Gollan, C. Hambidge, R. Morgan, M. McGilvray. Development and commissioning of the T6 Stalker Tunnel // Experiments in Fluids. 2021. Vol. 62. P. 1-24.
4. K.P. Lynch, T. Grasser, R. Spillers, C. Downing, K. A. Daniel, E.R. Jans, S. Kearney, B.J. Morreale, R. Wagnild, J.L. Wagner. Design and characterization of the Sandia free-piston reflected shock tunnel // Shock Waves. 2023. Vol. 33. P. 299–314.
5. Код Nenzf1d (GDTk). [Электронный ресурс]. – Режим доступа: https://gdtk.uqcloud.net/ (дата обращения: 24.02.2025).
6. M. McGilvray, A.G. Dann, P.A. Jacobs. Modelling the complete operation of a free-piston shock tunnel for a low enthalpy condition // Shock Waves. 2013. Vol. 23. P. 399–406.
7. P.A. Jacobs. Quasi-one-dimensional modelling of a free-piston shock tunnel // AIAA Journal. 1994. Vol. 32(1). P. 137-145.
8. D.R. Buttsworth, P.A. Jacobs, T.V. Jones. Simulation of Oxford University Gun Tunnel performance using a quasi-one-dimensional model // Shock Waves. 2002. Vol. 11. P. 377-383.
9. P.A. Jacobs, A.D. Gardner, D.R. Buttsworth, J.M. Schramm, S. Karl, K. Hannemann. End-to-end modelling of the HEG shock tunnel. In: Jiang, Z. (eds) Shock Waves. Springer, Berlin, Heidelberg, 2005.
10. D.E. Gildfind, P.A. Jacobs, R.G. Morgan, W.Y.K. Chan, R.J. Gollan. Scramjet test flow reconstruction for a large-scale expansion tube, Part 1: quasi-one-dimensional modelling // Shock Waves. 2018. Vol. 28. P. 877–897
11. Gasdynamic Toolkit (GDTk). [Электронный ресурс]. – Режим доступа: https://gdtk.uqcloud.net/ (дата обращения: 24.02.2025).
12. Н.А. Монахов, П.А. Попов, В.А. Сахаров, С.А. Поняев, Р.О. Куракин. Влияние материала диафрагмы на входе в сверхзвуковое сопло ударной трубы на обтекание затупленного тела // ЖТФ. 2024. Т. 94. №4. С. 581-589.
13. Баженова Т.В., Гвоздева Л.Г. Нестационарные взаимодействия ударных волн. М.: Наука, 1977. 274 с.
14. В.Г. Дулов, Г.А. Лукьянов. Газодинамика процессов истечения. Новосибирск: Наука. 1984. 234 с.
15. D. Wang, G. Han, M. Liu, Z. Li, Z. Jiang. Numerical investigation of the reflection of unsteady decelerating incident shock waves // Physics of Fluids. 2024. Vol. 36. 076125.