Валидация моделей поуровневой колебатель-но-химической кинетики на примере задачи о релаксации воздуха в послеразрядной зоне



Validation of state-to-state models of vibrational-chemical kinetics in the problem of air relaxation in the afterglow

Air relaxation in the afterglow of a DC pulse discharge was simulated using the state-to-state approach and two kinetic schemes. Good agreement of the results with experiment is shown. Key factors affecting the accuracy of the simulation were identified: consider-ation of vibrational nonequilibrium in all molecular species, the exchange Zeldovich reaction model, and the model for vibrational energy exchanges. A reduced kinetic scheme was developed that speeds-up calculations by 37 times saving the accuracy. The proposed model is applicable in a wide range of temperatures and nonequilibrium parameters.

pulsed DC discharge, state-to-state vibrational chemical kinetics, exchange reactions, vibrational excitation, electronic excitation


Том 26, выпуск 2, 2025 год



Проведено поуровневое моделирование релаксации воздуха в послеразрядной зоне импульсного разряда постоянного тока с использованием двух кинетических схем. Показано хорошее согласие результатов расчета с экспериментом. Выявлены ключевые факторы, влияющие на точность моделирования: учёт колебательной неравновесности всех молекулярных компонентов, модель обменных реакций Зельдовича и модель обменов колебательной энергией. Разработана сокращённая кинетическая схема, ускоряющая расчёты в 37 раз при сохранении точности. Предложенная модель применима в широком диапазоне температур и параметров неравновесности.

импульсный разряд постоянного тока, поуровневая колебательно–химическая кинетика, обменные реакции, колебательное возбуждение, электронное возбуждение


Том 26, выпуск 2, 2025 год



1. Surzhikov S., Shang J. Numerical Rebuilding of FIRE II Flight Data with the Use of Different Physical-Chemical Kinetics and Radiation Models // AIAA Paper. 2013. Pp. 0190. DOI: 10.2514/6.2013-190
2. Surzhikov S.T. Radiative gas dynamics of the Fire-II superorbital space vehicle // Technical Physics. 2016. Vol. 61, № 3. Pp. 349–359. DOI: 10.1134/S1063784216030208
3. Землянский Б.А., Лунев В.В., Власов В.И., Горшков А.Б., Залогин Г.Н., Ковалев Р.В., Маринин В.П., Мурзинов И.Н. Конвективный теплообмен летательных аппаратов. Москва: Физматлит, 2014.
4. Johnston C.O., Hollis B.R., Sutton K. Nonequilibrium stagnation-line radiative heating for Fire II // Journal of Spacecraft and Rockets. 2008. Vol. 45, № 6. Pp. 1185–1195. DOI: 10.2514/1.33008
5. Panesi M., Magin T.E., Bourdon A., Bultel A., Chazot O. Fire II flight experiment analysis by means of a collisional-radiative model // Journal of Thermophysics and Heat Transfer. 2009. Vol. 23, № 2. Pp. 236–248. DOI: 10.2514/1.39034
6. Ibraguimova L., Sergievskaya A., Levashov V., Shatalov O., Tunik Y.V., Zabelinskii I. Investi-gation of oxygen dissociation and vibrational relaxation at temperatures 4000–10800 K // Journal of Chemical Physics. 2013. Vol. 139. Pp. 034317. DOI: 10.1063/1.4813070
7. Streicher J., Krish A., Hanson R. Vibrational relaxation time measurements in shock-heated oxygen and air from 2000 K to 9000 K using ultraviolet laser absorption // Physics of Fluids. 2020. Vol. 32. Pp. 086101. DOI: 10.1063/5.0015890
8. Streicher J., Krish A., Hanson R. High-temperature vibrational relaxation and decomposition of shock-heated nitric oxide. I. Argon dilution from 2200 to 8700 K // Physics of Fluids. 2022. Vol. 34, № 11. Pp. 116122. DOI: 10.1063/5.0109109
9. Streicher J., Krish A., Hanson R. High-temperature vibrational relaxation and decomposition of shock-heated nitric oxide: II. Nitrogen dilution from 1900 to 8200 K // Physics of Fluids. 2022. Vol. 34, № 11. Pp. 116123. DOI: 10.1063/5.0122787
10. Popov N.A. Pulsed nanosecond discharge in air at high specific deposited energy: Fast gas heating and active particles production // Plasma Sources Science and Technology. 2016. Vol. 25. Pp. 044003. DOI: 10.1088/0963-0252/25/4/044003
11. Pintassilgo C.D., Guerra V., Guaitella O., Rousseau A. Study of gas heating mechanisms in mil-lisecond pulsed discharges and afterglows in air at low pressures // Plasma Sources Science and Technology. 2014. Vol. 23. Pp. 025006. DOI: 10.1088/0963-0252/23/2/025006
12. Saifutdinov A., Kustova E. Simulation of filamentation dynamics of microwave discharge in nitrogen // Plasma Sources Science and Technology. 2023. Vol. 32. Pp. 125010. DOI: 10.1088/1361-6595/ad13a3
13. Brandenburg R., Bogaerts A., Bongers W., et al. White paper on the future of plasma science in environment, for gas conversion and agriculture // Plasma Processes and Polymers. 2019. Vol. 16. Pp. 1700238. DOI: 10.1002/ppap.201700238
14. Park C. Review of chemical-kinetic problems of future NASA missions. I-Earth entries // Jour-nal of Thermophysics and Heat transfer. 1993. Vol. 7, № 3. Pp. 385–398. DOI: 10.2514/3.431
15. Физико-химические процессы в газовой динамике / под редакцией Черного Г.Г. и Лосева С.А. М.: Изд-во МГУ, 1995. Т. 1., 2002. Т. 2.
16. Нагнибеда Е.А., Кустова Е.В. Кинетическая теория процессов переноса и релаксации в потоках неравновесных реагирующих газов. СПб.: Издательство С.-Петербургского университета, 2003.
17. Campoli L., Kunova O., Kustova E., Melnik M. Models validation and code profiling in state-to-state simulations of shock heated air flows // Acta Astronautica. 2020. Vol. 175. Pp. 493–509. DOI: 10.1016/j.actaastro.2020.06.008
18. Kravchenko D., Kunova O., Kustova E., Melnik M. Reflected shock waves in air components and their mixtures: Validation of theoretical models // Acta Astronautica. 2024. Vol. 218. Pp. 47–58. DOI: 10.1016/j.actaastro.2024.02.011
19. Hübner M., Marinov D., Guaitella O., Rousseau A., Röpcke J. On time resolved gas tempera-ture measurements in a pulsed dc plasma using quantum cascade laser absorption spectroscopy // Measurement Science and Technology. 2012. Vol. 23, № 11. Pp. 115602. DOI: 10.1088/0957-0233/23/11/115602
20. Мельник М.Ю. Программный комплекс STS-Simple-Solver. 2022. GitHub. https://github.com/MaksimMelnik/STS-Simple-Solver/
21. Guerra V., Loureiro J. Non-equilibrium coupled kinetics in stationary N2-O2 discharges // Journal of Physics D: Applied Physics. 1995. Vol. 28. Pp. 1903. DOI: 10.1088/0022-3727/28/9/018
22. Gordiets B., Ricard A. Production of N, O and NO in N2-O2 flowing discharges // Plasma Sources Science and Technology. 1993. Vol. 2, № 3. Pp. 158. DOI: 10.1088/0963-0252/2/3/005
23. Adamovich I., Macheret S., Rich J., Treanor C. Vibrational energy transfer rates using a forced harmonic oscillator model // Journal of Thermophysics and Heat Transfer. 1998. Vol. 12. Pp. 57–65. DOI: 10.2514/2.6302
24. Schwartz R., Slawsky Z., Herzfeld K. Calculation of vibrational relaxation times in gases // Journal of Chemical Physics. 1952. Vol. 20, № 10. Pp. 1591–1599. DOI: 10.1063/1.1700221
25. Levron D., Phelps A.V. Quenching of N2(A 3Σ+u, v=0,1) by N2, Ar, and H2 // Journal of Chemical Physics. 1978. Vol. 69. Pp. 2260–2262. DOI: 10.1063/1.436788
26. Kim Y.C., Boudart M. Recombination of oxygen, nitrogen, and hydrogen atoms on silica: ki-netics and mechanism // Langmuir. 1991. Vol. 7, № 12. Pp. 2999–3005. DOI: 10.1021/la00060a016
27. Pagnon D., et al. On the use of actinometry to measure the dissociation in O2 DC glow dis-charges: determination of the wall recombination probability // Journal of Physics D: Applied Physics. 1995. Vol. 28, № 9. Pp. 1856. DOI: 10.1088/0022-3727/28/9/014
28. Kustova E., Savelev A. Generalized model for state-resolved chemical reaction rate coeffi-cients in high-temperature air // Journal of Physics: Conference Series. 2021. Vol. 1959. P. 012033. DOI: 10.1088/1742-6596/1959/1/012033
29. Piper L.G. The excitation of N2(B3Πg, v= 1–12) in the reaction between N2(A3Σ+u) and N2(X, v≥ 5) // Journal of Chemical Physics. 1989. Vol. 91. Pp. 864. DOI: 10.1063/1.457138
30. Loukhovitski B.I., Starik A.M. Modeling of vibration–electronic–chemistry coupling in the atomic–molecular oxygen system // Chemical Physics. 2009. Vol. 360. Pp. 18–26. DOI: 10.1016/j.chemphys.2009.04.003
31. Kossyi I.A., Kostinsky A.Yu., Matveyev A.A., Silakov V.P. Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures // Plasma Sources Science and Technology. 1992. Vol. 1. Pp. 207. DOI: 10.1088/0963-0252/1/3/011
32. Piper L.G. Energy transfer studies on N2(X1Σ+g, v) and N2(B3Πg) // Journal of Chemical Physics. 1992. Vol. 97. Pp. 270. DOI: 10.1063/1.463625
33. Guerra V., Loureiro J. Electron and heavy particle kinetics in a low-pressure nitrogen glow dis-charge // Plasma Sources Science and Technology. 1997. Vol. 6. Pp. 361. DOI: 10.1088/0963-0252/6/3/013
34. Piper L.G. State‐to‐state N2(A3∑+u) energy pooling reactions. II. The formation and quenching of N2(B3Πg, v′= 1–12) // Journal of Chemical Physics. 1988. Vol. 88. Pp. 6911. DOI: 10.1063/1.454388
35. Boeuf J.P., Kunhardt E.E. Kunhardt E. E. Energy balance in a nonequilibrium weakly ionized nitrogen discharge // Journal of Applied Physics. 1986. Vol. 60. Pp. 915. DOI: 10.1063/1.337332
36. Heidner R.F., Sutton D.G., Suchard S.N. Kinetic study of N2(B3Πg, υ) quenching by laser-induced fluorescence // Chemical Physics Letters. 1976. Vol. 37. Pp. 243. DOI: 10.1016/0009-2614(76)80207-2
37. Zipf E.C., McLaughlin R.W. On the dissociation of nitrogen by electron impact and by EUV photo-absorption // Planetary and Space Science. 1978. Vol. 26. Pp. 449. DOI: 10.1016/0032-0633(78)90066-1
38. Tejero-del-Caz A., Guerra V., Gonçalves D., da Silva M.L., Marques L., Pinhão N., Pintassilgo C.D., Alves L.L. The LisbOn KInetics Boltzmann solver // Plasma Sources Science and Tech-nology. 2019. Vol. 28. Pp. 043001. DOI: 10.1088/1361-6595/ab0537
39. Gimelshein S.F., Wysong I.J., Adamovich I.V. Direct Simulation Monte Carlo Application of the Three-Dimensional Forced Harmonic Oscillator Model // Journal of Thermophysics and Heat Transfer. 2018. Vol. 32, № 4. Pp. 882-891. DOI: 10.2514/1.T5228
40. Oblapenko G.P. Calculation of Vibrational Relaxation Times Using a Kinetic Theory Approach // Journal of Physical Chemistry A. 2018. Vol. 122, № 50. Pp. 9615–9625. DOI: 10.1021/acs.jpca.8b09897