Validation of state-to-state models of vibrational-chemical kinetics in the problem of air relaxation in the afterglow
Air relaxation in the afterglow of a DC pulse discharge was simulated using the state-to-state approach and two kinetic schemes. Good agreement of the results with experiment is shown. Key factors affecting the accuracy of the simulation were identified: consider-ation of vibrational nonequilibrium in all molecular species, the exchange Zeldovich reaction model, and the model for vibrational energy exchanges. A reduced kinetic scheme was developed that speeds-up calculations by 37 times saving the accuracy. The proposed model is applicable in a wide range of temperatures and nonequilibrium parameters.
pulsed DC discharge, state-to-state vibrational chemical kinetics, exchange reactions, vibrational excitation, electronic excitation
Проведено поуровневое моделирование релаксации воздуха в послеразрядной зоне импульсного разряда постоянного тока с использованием двух кинетических схем. Показано хорошее согласие результатов расчета с экспериментом. Выявлены ключевые факторы, влияющие на точность моделирования: учёт колебательной неравновесности всех молекулярных компонентов, модель обменных реакций Зельдовича и модель обменов колебательной энергией. Разработана сокращённая кинетическая схема, ускоряющая расчёты в 37 раз при сохранении точности. Предложенная модель применима в широком диапазоне температур и параметров неравновесности.
1. Surzhikov S., Shang J. Numerical Rebuilding of FIRE II Flight Data with the Use of Different Physical-Chemical Kinetics and Radiation Models // AIAA Paper. 2013. Pp. 0190. DOI: 10.2514/6.2013-190 2. Surzhikov S.T. Radiative gas dynamics of the Fire-II superorbital space vehicle // Technical Physics. 2016. Vol. 61, № 3. Pp. 349–359. DOI: 10.1134/S1063784216030208 3. Землянский Б.А., Лунев В.В., Власов В.И., Горшков А.Б., Залогин Г.Н., Ковалев Р.В., Маринин В.П., Мурзинов И.Н. Конвективный теплообмен летательных аппаратов. Москва: Физматлит, 2014. 4. Johnston C.O., Hollis B.R., Sutton K. Nonequilibrium stagnation-line radiative heating for Fire II // Journal of Spacecraft and Rockets. 2008. Vol. 45, № 6. Pp. 1185–1195. DOI: 10.2514/1.33008 5. Panesi M., Magin T.E., Bourdon A., Bultel A., Chazot O. Fire II flight experiment analysis by means of a collisional-radiative model // Journal of Thermophysics and Heat Transfer. 2009. Vol. 23, № 2. Pp. 236–248. DOI: 10.2514/1.39034 6. Ibraguimova L., Sergievskaya A., Levashov V., Shatalov O., Tunik Y.V., Zabelinskii I. Investi-gation of oxygen dissociation and vibrational relaxation at temperatures 4000–10800 K // Journal of Chemical Physics. 2013. Vol. 139. Pp. 034317. DOI: 10.1063/1.4813070 7. Streicher J., Krish A., Hanson R. Vibrational relaxation time measurements in shock-heated oxygen and air from 2000 K to 9000 K using ultraviolet laser absorption // Physics of Fluids. 2020. Vol. 32. Pp. 086101. DOI: 10.1063/5.0015890 8. Streicher J., Krish A., Hanson R. High-temperature vibrational relaxation and decomposition of shock-heated nitric oxide. I. Argon dilution from 2200 to 8700 K // Physics of Fluids. 2022. Vol. 34, № 11. Pp. 116122. DOI: 10.1063/5.0109109 9. Streicher J., Krish A., Hanson R. High-temperature vibrational relaxation and decomposition of shock-heated nitric oxide: II. Nitrogen dilution from 1900 to 8200 K // Physics of Fluids. 2022. Vol. 34, № 11. Pp. 116123. DOI: 10.1063/5.0122787 10. Popov N.A. Pulsed nanosecond discharge in air at high specific deposited energy: Fast gas heating and active particles production // Plasma Sources Science and Technology. 2016. Vol. 25. Pp. 044003. DOI: 10.1088/0963-0252/25/4/044003 11. Pintassilgo C.D., Guerra V., Guaitella O., Rousseau A. Study of gas heating mechanisms in mil-lisecond pulsed discharges and afterglows in air at low pressures // Plasma Sources Science and Technology. 2014. Vol. 23. Pp. 025006. DOI: 10.1088/0963-0252/23/2/025006 12. Saifutdinov A., Kustova E. Simulation of filamentation dynamics of microwave discharge in nitrogen // Plasma Sources Science and Technology. 2023. Vol. 32. Pp. 125010. DOI: 10.1088/1361-6595/ad13a3 13. Brandenburg R., Bogaerts A., Bongers W., et al. White paper on the future of plasma science in environment, for gas conversion and agriculture // Plasma Processes and Polymers. 2019. Vol. 16. Pp. 1700238. DOI: 10.1002/ppap.201700238 14. Park C. Review of chemical-kinetic problems of future NASA missions. I-Earth entries // Jour-nal of Thermophysics and Heat transfer. 1993. Vol. 7, № 3. Pp. 385–398. DOI: 10.2514/3.431 15. Физико-химические процессы в газовой динамике / под редакцией Черного Г.Г. и Лосева С.А. М.: Изд-во МГУ, 1995. Т. 1., 2002. Т. 2. 16. Нагнибеда Е.А., Кустова Е.В. Кинетическая теория процессов переноса и релаксации в потоках неравновесных реагирующих газов. СПб.: Издательство С.-Петербургского университета, 2003. 17. Campoli L., Kunova O., Kustova E., Melnik M. Models validation and code profiling in state-to-state simulations of shock heated air flows // Acta Astronautica. 2020. Vol. 175. Pp. 493–509. DOI: 10.1016/j.actaastro.2020.06.008 18. Kravchenko D., Kunova O., Kustova E., Melnik M. Reflected shock waves in air components and their mixtures: Validation of theoretical models // Acta Astronautica. 2024. Vol. 218. Pp. 47–58. DOI: 10.1016/j.actaastro.2024.02.011 19. Hübner M., Marinov D., Guaitella O., Rousseau A., Röpcke J. On time resolved gas tempera-ture measurements in a pulsed dc plasma using quantum cascade laser absorption spectroscopy // Measurement Science and Technology. 2012. Vol. 23, № 11. Pp. 115602. DOI: 10.1088/0957-0233/23/11/115602 20. Мельник М.Ю. Программный комплекс STS-Simple-Solver. 2022. GitHub. https://github.com/MaksimMelnik/STS-Simple-Solver/ 21. Guerra V., Loureiro J. Non-equilibrium coupled kinetics in stationary N2-O2 discharges // Journal of Physics D: Applied Physics. 1995. Vol. 28. Pp. 1903. DOI: 10.1088/0022-3727/28/9/018 22. Gordiets B., Ricard A. Production of N, O and NO in N2-O2 flowing discharges // Plasma Sources Science and Technology. 1993. Vol. 2, № 3. Pp. 158. DOI: 10.1088/0963-0252/2/3/005 23. Adamovich I., Macheret S., Rich J., Treanor C. Vibrational energy transfer rates using a forced harmonic oscillator model // Journal of Thermophysics and Heat Transfer. 1998. Vol. 12. Pp. 57–65. DOI: 10.2514/2.6302 24. Schwartz R., Slawsky Z., Herzfeld K. Calculation of vibrational relaxation times in gases // Journal of Chemical Physics. 1952. Vol. 20, № 10. Pp. 1591–1599. DOI: 10.1063/1.1700221 25. Levron D., Phelps A.V. Quenching of N2(A 3Σ+u, v=0,1) by N2, Ar, and H2 // Journal of Chemical Physics. 1978. Vol. 69. Pp. 2260–2262. DOI: 10.1063/1.436788 26. Kim Y.C., Boudart M. Recombination of oxygen, nitrogen, and hydrogen atoms on silica: ki-netics and mechanism // Langmuir. 1991. Vol. 7, № 12. Pp. 2999–3005. DOI: 10.1021/la00060a016 27. Pagnon D., et al. On the use of actinometry to measure the dissociation in O2 DC glow dis-charges: determination of the wall recombination probability // Journal of Physics D: Applied Physics. 1995. Vol. 28, № 9. Pp. 1856. DOI: 10.1088/0022-3727/28/9/014 28. Kustova E., Savelev A. Generalized model for state-resolved chemical reaction rate coeffi-cients in high-temperature air // Journal of Physics: Conference Series. 2021. Vol. 1959. P. 012033. DOI: 10.1088/1742-6596/1959/1/012033 29. Piper L.G. The excitation of N2(B3Πg, v= 1–12) in the reaction between N2(A3Σ+u) and N2(X, v≥ 5) // Journal of Chemical Physics. 1989. Vol. 91. Pp. 864. DOI: 10.1063/1.457138 30. Loukhovitski B.I., Starik A.M. Modeling of vibration–electronic–chemistry coupling in the atomic–molecular oxygen system // Chemical Physics. 2009. Vol. 360. Pp. 18–26. DOI: 10.1016/j.chemphys.2009.04.003 31. Kossyi I.A., Kostinsky A.Yu., Matveyev A.A., Silakov V.P. Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures // Plasma Sources Science and Technology. 1992. Vol. 1. Pp. 207. DOI: 10.1088/0963-0252/1/3/011 32. Piper L.G. Energy transfer studies on N2(X1Σ+g, v) and N2(B3Πg) // Journal of Chemical Physics. 1992. Vol. 97. Pp. 270. DOI: 10.1063/1.463625 33. Guerra V., Loureiro J. Electron and heavy particle kinetics in a low-pressure nitrogen glow dis-charge // Plasma Sources Science and Technology. 1997. Vol. 6. Pp. 361. DOI: 10.1088/0963-0252/6/3/013 34. Piper L.G. State‐to‐state N2(A3∑+u) energy pooling reactions. II. The formation and quenching of N2(B3Πg, v′= 1–12) // Journal of Chemical Physics. 1988. Vol. 88. Pp. 6911. DOI: 10.1063/1.454388 35. Boeuf J.P., Kunhardt E.E. Kunhardt E. E. Energy balance in a nonequilibrium weakly ionized nitrogen discharge // Journal of Applied Physics. 1986. Vol. 60. Pp. 915. DOI: 10.1063/1.337332 36. Heidner R.F., Sutton D.G., Suchard S.N. Kinetic study of N2(B3Πg, υ) quenching by laser-induced fluorescence // Chemical Physics Letters. 1976. Vol. 37. Pp. 243. DOI: 10.1016/0009-2614(76)80207-2 37. Zipf E.C., McLaughlin R.W. On the dissociation of nitrogen by electron impact and by EUV photo-absorption // Planetary and Space Science. 1978. Vol. 26. Pp. 449. DOI: 10.1016/0032-0633(78)90066-1 38. Tejero-del-Caz A., Guerra V., Gonçalves D., da Silva M.L., Marques L., Pinhão N., Pintassilgo C.D., Alves L.L. The LisbOn KInetics Boltzmann solver // Plasma Sources Science and Tech-nology. 2019. Vol. 28. Pp. 043001. DOI: 10.1088/1361-6595/ab0537 39. Gimelshein S.F., Wysong I.J., Adamovich I.V. Direct Simulation Monte Carlo Application of the Three-Dimensional Forced Harmonic Oscillator Model // Journal of Thermophysics and Heat Transfer. 2018. Vol. 32, № 4. Pp. 882-891. DOI: 10.2514/1.T5228 40. Oblapenko G.P. Calculation of Vibrational Relaxation Times Using a Kinetic Theory Approach // Journal of Physical Chemistry A. 2018. Vol. 122, № 50. Pp. 9615–9625. DOI: 10.1021/acs.jpca.8b09897