The paper examines the effect of the parameters of unstructured tetrahedral meshes on the results of modeling the flow around the standard HB-2 model with a viscous thermally con-ductive gas at zero angle of attack, the Mach number is 1.5. The meshes were constructed using the free TetGen and Gmsh software packages. The simulation was based on the system of regularized (quasi-gas dynamic) equations. It was shown that using the better meshes ac-cording to a set of criteria (small size of cells on the surface of the model, low degree of une-venness, high quality of cells), the simulation results are closer to experimental data than on meshes that are the worse according to the specified criteria. In addition, with the improve-ment of the quality of the meshes, it becomes possible to simulate non-stationary flow modes.
Влияние характеристик тетраэдральных сеток на точность моделирования сверхзвукового обтекания осесимметричной модели
В работе исследуется влияние параметров неструктурированных тетраэдральных сеток на результаты моделирования обтекания стандартной модели HB-2 вязким теплопроводным газом при нулевом угле атаки, число Маха равно 1.5. Расчетные сетки строились с помощью свободно распространяемых пакетов TetGen и Gmsh. Моделирование проводилось на основе системы регуляризованных (квазигазодинамических) уравнений. Показано, что при использовании сеток, лучших по совокупности критериев (малый размер ячеек на поверхности модели, малая степень неравномерности, высокое качество ячеек), результаты моделирования ближе к экспериментальным данным, чем на сетках, худших по указанным критериям. Кроме того, при улучшении качества сеток появляется воз-можность моделирования нестационарных режимов обтекания.
тетраэдральная сетка, сеточные генераторы, модель HB-2, квазигазодинамический алго-ритм
1. Watson D.F. Computing the n-dimensional Delaunay tessellation with application to Voronoi poly-topes. // The Computer Journal. 1981. Vol. 24(2). P. 167–172. 2. Bowyer A. Computing Dirichlet tessellations // The Computer Journal. 1981. Vol. 24(2). 167–172. 3. George P.-L., Frey P.J. Mesh generation. Hermes, Lyon, 2000. 850 p. 4. Rebay S. Efficient unstructured mesh generation by means of Delaunay triangulation and Bowyer-Watson algorithm // J. Comput. Phys. 1993. Vol. 106. P. 25–138. 5. Sukov S. A. Tetrahedral mesh generation algorithms and applications // Keldysh Institute Pre-prints. 2015. No 23. 22 p. 6. Poliakov S. V., Churbanov A. G. Free and open source software for mathematical modeling // Keldysh Institute Preprints. 2019. No 145. 32 p. 7. Ermakov M. K., Kriuchkova A. S. Generation of unstructured tetrahedral meshes for flow past flight vehicles based on open packages // Physical-Chemical Kinetics in Gas Dynamic. 2020. V. 21, iss. 2. http://chemphys.edu.ru/issues/2020-21-2/articles/897/ 8. Shirokov I.A., Elizarova T.G. On the influence of a spatial mesh structure on the results of numer-ical simulation of a shock wave in a flow around a 3D model // Fluid Dynamics. 2022. V. 57, suppl. 1, No 9, p. S1–S12. http://chemphys.edu.ru/issues/2019-20-1/articles/796/ 9. Gray J.D. Summary Report on Aerodynamic Characteristics of Standard Models HB-1 and HB-2. AEDC-TDR-64-137. 1964. 10. Ceresuela R. Maquettes etalons HB-1 et HB-2. Caracteristiques aerodynamiques mesurees dans les souffleries de l’O.N.E.R.A. de Mach 2 a Mach 16,5 // Note Technique O.N.E.R.A. 1968. № 123. 24 p. 11. Vukovic Dj., Damljanovic D. HB-2 high-velocity correlation model at high angles of attack in su-personic wind tunnel tests // Chinese Journal of Aeronautics. 2019. 32(7). P. 1565–1576. 12. Kryuchkova A.S. Numerical simulation of supersonic flows over ballistic models using UST3D programming code // Physical-Chemical Kinetics in Gas Dynamic. 2018. V. 19, iss. 4. https://chemphys.edu.ru/issues/2018-19-4/articles/783/ 13. Chetverushkin B.N. Kinetic schemes and quasi-gas dynamic system of equations. Barselona: CIMNE, 2008. 298 p. 14. Elizarova T.G. Quasi-qas dynamic equations. Dordrecht: Springer, 2009. 300 p. 15. Sheretov Yu. V. Regularized Hydrodynamic Equations, Tver State University, 2016. 222 p. 16. Elizarova T.G., Graur I.A., Lengrand J.C., Chpoun A. Rarefied gas flow simulation based on quasi gas dynamic equations // AIAA Journal. 1995. Vol. 33. No. 12. P. 2316–2324. 17. Elizarova T.G., Shirokov I.A. Regularized equations and examples of their use in the modeling of gas-dynamic flows. Moscow, MAKS Press, 2017. 136 p. 18. Shirokov I.A., Elizarova T.G. Simulation of laminar–turbulent transition in compressible Taylor–Green flow bas-ing on quasi-gas dynamic equations // J. of Turbulence. 2014. Vol. 15, iss 10. P. 707–730. 19. Elizarova T.G., Shirokov I. A. Artificial dissipation coefficients in regularized equations of super-sonic aerodynamics // Doklady Mathematics. 2018. V. 98, No. 3. P. 648–651. 20. Shirokov I. A. Numerical study of the aerodynamic characteristics of a triangular wing at different angles of attack and large Mach numbers. Keldysh Institute Preprints. 2021. No 56. 24 p. 21. TetGen: A quality tetrahedral mesh generator. http://tetgen.berlios.de 22. Gmsh: three-dimensional finite element mesh generator https://gmsh.info 23. Shirokov I.A. Mesh construction algorithm based on TetGen for modeling the external flow around an axisymmetric model // Mathematical Models and Computer Simulations. 2021. Vol. 13, No. 6. P. 1148–1159. 24. K-100 System, Keldysh Institute of Applied Mathematics RAS, Moscow. https://www.kiam.ru/MVS/resourses/k100.html