Numerical study of the HB-2 standard model aerodynamics at the supersonic velocities
The HB-2 numerical simulation results for Mach from 1.5 to 3 under angle of attack from –2 deg to +24 deg are presented. The comparison between computational and experimental [Vuković D., Damljanović D. 2019] data is performed. The calculations were conducted us-ing the method for splitting into the physical processes which uses the unstructured grids. The comparison between hexahedron and prismatic grids is demonstrated.
Aerodynamical coefficients, unstructured grids, standard models, shock wave structures
В данной статье представлены результаты расчетов обтекания стандартной модели HB-2 для условий набегающего потока, соответствующим числам Маха от 1.5 до 3 в диапазоне углов атаки от –2…+24 градусов. Выполнено сравнение результатов расчетов с опубликованными экспериментальными данными [Vuković D., Damljanović D. 2019] по силовым и моментным характеристикам. Цикл расчетов был выполнен с применением метода расщепления по физическим процессам, реализованного на неструктурированных сетках. Показано сравнение результатов расчетов, полученных на гексагональных и призматических сетках.
Аэродинамические коэффициенты, неструктурированные сетки, стандартные модели, ударно-волновые структуры
1. Gray J. D., Lindsay E. E. Force tests of standard hypervelocity ballistic models HB-1 and HB-2 at Mach 1.5 to 10. – Arnold Engineering Development Center, Air Force Systems Command, Unit-ed States Air Force, 1963. – Т. 63. 2. Gray J. D. Summary report on aerodynamic characteristics of standard models HB-1 and HB-2 // (No Title). – 1964. 3. Millard W. A. Summary of the Stability and Axial Force Data Obtained During the Sandia Test Program on the Standard Hypervelocity Ballistic Models HB-1 AND HB-2. – Sandia National Lab. (SNL-NM), Albuquerque, NM (United States), 1967. – №. SC-DC-67-1540; CONF-670511-1. 4. Kuchi-Ishi S. et al. Comparative force/heat flux measurements between JAXA hypersonic test facilities using standard model HB-2 (Part 1: 1.27 m hypersonic wind tunnel results) //JAXA research and development report, Japan Aerospace Exploration Agency, Japan. – 2005. 5. Адамов Н. П. и др. Исследования характеристик гиперзвуковой аэродинамической тру-бы АТ-303. Часть 2. Аэродинамика эталонной модели HB-2 // Теплофизика и аэромеханика. – 2006. – Т. 13. – №. 2. – С. 173-188. 6. Суржиков С. Т. Численная интерпретация экспериментальных данных по аэродинамике модели HB-2 с использованием компьютерных кодов USTFEN и PERAT-3D // Физико-химическая кинетика в газовой динамике. 2020. Т.21, вып. 1. http://chemphys.edu.ru/issues/2020-21-1/articles/900/ 7. Крючкова А. С. Моделирование сверхзвукового обтекания баллистических моделей в программном коде UST3D//Физико-химическая кинетика в газовой динамике. 2018. Т.19, вып. 4. http://chemphys.edu.ru/issues/2018-19-4/articles/783/ 8. Yatsukhno D. S. Application of the finite volume method for the standard ballistic model aerodynamics calculations //Journal of Physics: Conference Series. – IOP Publishing, 2019. – Т. 1250. – №. 1. – С. 012011. 9. Borisov V. E. et al. Heat flux in supersonic flow past ballistic model at various angles of at-tack and wall temperatures //Acta Astronautica. – 2021. – Т. 183. – С. 52-58. Vuković D., Damljanović D. HB-2 high-velocity correlation model at high angles of attack in supersonic wind tunnel tests //Chinese Journal of Aeronautics. – 2019. – Т. 32. – №. 7. – С. 1565-1576. 10. Vuković D., Damljanović D. HB-2 high-velocity correlation model at high angles of attack in supersonic wind tunnel tests //Chinese Journal of Aeronautics. – 2019. – Т. 32. – №. 7. – С. 1565-1576. 11. Surzhikov S.T. Validation of computational code UST3D by the example of experimental aerodynamic data // Journal of Physics: Conference Series. 2017. Vol. 815. No 12023 https://doi.org/10.1088/1742-6596/815/1/012023 12. Liou M. S., Steffen Jr C. J. A new flux splitting scheme //Journal of Computational physics. – 1993. – Т. 107. – №. 1. – С. 23-39. 13. Liou M. S. A sequel to AUSM: AUSM+ //Journal of computational Physics. – 1996. – Т. 129. – №. 2. – С. 364-382. 14. Hu Z., Zha G. Simulation of 3D Flows of Propulsion Systems Using an Efficient Low Diffu-sion E-CUSP Upwind Scheme // AIAA Paper 2004-4082. 2004. pp. 1-12 https://doi.org/10.2514/6.2004-4082 15. Яцухно Д. С. О некоторых практических аспектах построения расчетных сеток для задач вычислительной аэротермодинамики//Физико-химическая кинетика в газовой динамике. 2023. Т.24, вып. 6. http://chemphys.edu.ru/issues/2023-24-6/articles/1036/