Calculation of distillation curves of hydrocarbon and oxygenate mixtures using activity coefficients
This work is devoted to the calculation of the distillation curve of mixed fuels including petroleum hydrocarbons and biocomponents. When calculating the distillation curves of such fuels using the standard technique, in some cases there is a significant deviation at the beginning of the graph. Therefore, in this work, activity coefficients were used to de-termine the saturated vapor pressure of the mixture when calculating the distillation curves. The distillation curves of the tetradecane - propanol-1 mixture were calculated taking into account the activity coefficient in the Raoult equation when determining the saturated vapor pressure of the mixture. The obtained distillation curves were compared with the experimental data also obtained by the authors of the work. Systems with dif-ferent contents of the oxygen-containing component (25, 50 and 75 vol.%) were consid-ered. The UNIFAC model was used to calculate the activity coefficient. The results showed that the use of activity coefficients leads to a decrease in the discrepancy be-tween the calculated and experimental distillation curves for mixtures with a biocompo-nent content of up to 50%.
enter biofuels, distillation curve, saturated vapor pressure, activity coefficients, hydro-carbons.
Данная работа посвящена расчетному определению кривой дистилляции смесевых топлив, включающих нефтяные углеводороды и биокомпоненты. При расчете кривых дистилляции таких топлив с помощью стандартной методики в некоторых случаях возникает значительное отклонение в начале графика. Поэтому в данной работе были применены коэффициенты активности для определения давления насыщенных паров смеси при расчетном построении кривых дистилляции. Был проведен расчет кривых дистилляции смеси «тетрадекан – пропанол-1» с учетом коэффициента активности в уравнении Рауля при определении давления насыщенного пара смеси. Полученные кривые дистилляции сопоставленными с экспериментальными данными, также полученными авторами работы. Рассматривались системы с различным содержанием кислородсодержащего компонента (25, 50 и 75 % об.). Для расчета коэффициента активности использовали модель UNIFAC. Полученные результаты показали, что применение коэффициентов активности приводит к уменьшению расхождения между расчетной и экспериментальной кривыми дистилляции для смесей с содержанием биокомпонента до 50 %.
биотопливо, кривая дистилляции, давление насыщенных паров, коэффициенты активности, углеводороды.
1. Analysis and forecast to 2025 / Abdelilah Y, Bahar H, Criswell T [et al.] // France: International Energy Agency Publications, 2020. 172 p. 2. Vella J. R., Marshall B. D. Prediction of the Distillation Curve and Vapor Pressure of Alcohol–Gasoline Blends Using Pseudocomponents and an Equation of State // Industrial & Engineering Chemistry Research. 2020. Vol. 59. P. 8361-8373. 3. Reducing gasoline engine emissions using novel bio-based oxygenates: a review / D. Gopinath, S. E.Ganapathy, T. Palani [et al.] // Emergent Materials. 2023. Vol. 6. P. 1393–1413. 4. Amine M., Barakat Y. Properties of gasoline-ethanol-methanol ternary fuel blend compared with ethanol-gasoline and methanol-gasoline fuel blends Egyptian Journal of Petroleum. 2019. Vol. 28. № 4. P. 371-376. 5. Distillation curves for alcohol-gasoline blends / V.F. Andersen, J.E. Anderson, T.J. Wallington, [et al.] // Energy Fuels. 2010. Vol. 24. № 4. P. 2683–2691. 6. Study of the influence of alcohols addition to gasoline on the distillation curve, and vapor pres-sure / I. Nita, E. Geacai, S. G. Osman [et al.] // Ovidius University Annals of Chemistry. 2019. Vol. 3. P. 122-126. 7. Selection criteria and screening of potential biomassderived streams as fuel blendstocks for advanced spark-ignition engines / R. L. McCormick, G. Fioroni, L. Fouts // SAE International Journal of Fuels and Lubricants. 2017. Vol. 10. P. 442–460. 8. Saeid Aghahossein Shirazi, Bahareh Abdollahipoor, Jake Martinson, Bret Windom, Thomas D. Foust, Kenneth F. Reardon. Effects of dual-alcohol gasoline blends on physiochemical proper-ties and volatility behavior / S. A. Shirazi, B. Abdollahipoor, J. Martinson // Fuel. 2019. Vol. 252. P. 542-552. 9. Oduola K., Iyaomolere A. Development of model equations for predicting gasoline blending properties // American Journal of Chemical Engineering. 2015. Vol. 3. P. 9-17. 10. Hosseinifar P., Shahverdi H. A predictive method for constructing the distillation curve of pe-troleum fluids using their physical bulk properties // Journal of Petroleum Science and Engi-neering. 2021. Vol. 200. P. 108403. 11. Muelas A., Aranda D., Ballester J.. Alternative Method for the Formulation of Surrogate Liquid Fuels Based on Evaporative and Sooting Behaviors // Energy Fuels. 2019.Vol. 33. P. 5719-5731. 12. Surrogate Mixture Model for the Thermophysical Properties of Synthetic Aviation Fuel S-8: Explicit Application of the Advanced Distillation Curve / M. L. Huber, B. L. Smith, L. S. Ott, [et al.] // Energy and Fuels. 2008. Vol. 22. P. 1104–1114. 13. Doohyun K., Martz J., Violi A.. A surrogate for emulating the physical and chemical properties of conventional jet fuel // Combustion and Flame. 2014. Vol. 161. P. 1489–1498. 14. Hosseinifar P., Shahverdi H. A predictive method for constructing the distillation curve of pe-troleum fluids using their physical bulk properties // Journal of Petroleum Science and Engi-neering. 2021. Vol. 200. P. 108403. 15. Hosseinifar P., Shahverdi H. Prediction of the ASTM and TBP distillation curves and specific gravity distribution curve for fuels and petroleum fluids // The Canadian Journal of Chemical Engineering. 2021. Vol.100. P. 3288-3310. 16. Wilson G.M. Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing // Journal of the American Chemical Society. 1964. Vol. 86. P. 127–130. 17. Renon H., Pruasnitz J. M. Local compositions in thermodynamics excess functions for liquids mixtures // Aiche Journal. 1968. Vol 14. P. 116–128. 18. Abrams D. S., Prausnitz J. M., Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems // Aiche Journal. 1975. Vol. 21. P. 116–128. 19. Derr E.L., Deal C.H. Analytical solutions of groups: correlation of activity coefficients through structural groups parameters // Chemical Engineering Progress Symposium Series. 1969. Vol. 32. P. 3-40. 20. Fredenslund A., Jones R.L., Prausnitz J.M. Group-contribution estimation of activity coeffi-cients in nonideal liquid mixtures // Aiche Journal. 1975. Vol. 21. P. 1086–1099. 21. Cox K. R. Chapman W. G. The Properties of Gases and Liquids, 5th Edition By Bruce E. Pol-ing (University of Toledo), John M. Prausnitz (University of California at Berkeley), and John P. O'Connell (University of Virginia). McGraw-Hill: New York. 2001. 768 pp. // Journal of The American Chemical Society. 2001. Vol. 123. P. 6745-6745. 22. ГОСТ Р 53707-2009. Нефтепродукты. Метод дистилляции при атмосферном давлении. М.: Стандартинформ, 2011. 48 с. [Электронный ресурс]. URL: https://files.stroyinf.ru/Data2/1/4293812/4293812300.pdf?ysclid=m49puoijwq168129195