Modeling of optical discharge radiation parameters in the 400-200 nm UV monochromator for bactericidal treatment




A special UV monochromator was created for bactericidal irradiation of malicious microorganisms in the wavelength range of 400-200 nm. A continuous optical discharge was used as a radiation source. The work contains a description of the device, measurements of the radiation density at the place of biological object samples and a comparison with the results of numerical modeling of radiation propagation in the optical scheme used. The data obtained shows a high level of accuracy in determining the density of radiation arriving at the irradiated microorganisms in the UV range.

continious optical discharge, UV, monochromator, ray tracing, bactericidal irradiation

Моделирование параметров излучения оптического разряда в схеме УФ монохроматора 400-200 нм для бактерицидного воздействия

Специальный УФ-монохроматор создан для бактерицидного облучения вредоносных микроорганизмов в диапазоне длин вол 400-200 нм. В качестве источника излучения использовался непрерывный оптический разряд. Работа содержит описание устройства, замеры плотности излучения в месте облучения образцов биологических объектов и сравнение с результатами численного моделирования распространения излучения в используемой оптической схеме. Полученные данные позволяют говорить о высоком уровне точности определения плотности излучения, приходящего на облучаемые микроорганизмы в УФ диапазоне.

непрерывный оптический разряд, УФ, монохроматор, трассировка лучей, бактерицидное облучение


(in russian) Kotov M.A., et. al. Bactericidal efficiency of UV generated by a laser-plasma source. Lasers in science, technology, medicine: Collection of scientific papers of the XXXII International Conference. Vol. 32 / edited by V. A. Petrov-M.: MNTORES named after A.S. Popov, 2022
2. Welch D., Buonanno M., Grilj V., et al. Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases. Scientific Reports. 2018. 8. 2752 DOI 10.1038/s41598-018-21058-w
3. Kotov M.A., et. al. Effect of UV Radiation and Ozone on the Viability of Biofilms and Resting Forms of Pseudomonas Aeruginosa Bacteria. Proceedings of the 9th International Conference on Physical and Mathematical Modelling of Earth and Environmental Processes. PMMEEP 2023. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. DOI 10.1007/978-3-031-54589-4_5
4. Buonanno M., Ponnaiya B., Welch D., Stanislauskas M., Randers-Pehrson G., Smilenov L., Lowy F.D., Owens D.M., Brenner D.J. Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light. Radiat Res. 2017 Apr. 187 (4) pp. 483-491 DOI 10.1667/RR0010CC.1
5. Buonanno M. et al. 207-nm UV light-a promising tool for safe low-cost reduction of surgical site infections. I: in vitro studies. PloS one. 2013. Vol. 8. No. 10. e76968 DOI 10.1371/journal.pone.0076968
6. Raizer Yu.P. The Feasibility of an Optical Plasmotron and Its Power Requirements. JETP Letters. 1970. Vol.11. pp. 120-123
7. Generalov N.A., Zimakov V.P., Kozlov G.I., Masyukov V.A., Raizer Yu.P. Continuous Optical Discharge. JETP Letters. 1970. Vol.11. pp. 302-304
8. https://www.isteq.nl/xws-65.php (accessed on 12/04/2024)
9. https://www.newport.com/p/50329AL (accessed on 12/04/2024)
10. www.spllifesciences.com (accessed on 12/04/2024)
11. Kotov M.A., et al. Symmetrization and amplification of germicidal radiation flux produced by a mercury amalgam UV lamp in cylindrical cavity with diffusely reflective walls. Symmetry. 2022. Vol. 14. No. 1. P. 125 DOI 10.3390/sym14010125
12. Kotov M. A., et al. Increase in illumination of 253.7 nm in a cylindrical PTFE cavity. Processes in GeoMedia, Volume V. Springer International Publishing, 2022. Pp. 117-130 DOI 10.1007/978-3-030-85851-3_14
13. https://alkor.net/alkorru/steklo_KU-1.html (accessed on 12/04/2024)