Peculiarities of soot formation during shock-wave pyrolysis of ethylene
In this paper, the peculiarities of soot formation at different pressures during ethylene pyrolysis in a shock tube were studied experimentally and numerically. The range of pressures of 6—26 bar and carbon concentrations of 2.8-3.8 mol/m3 was selected for in-vestigation based on the analysis of literature data. Diagnostics of the soot formation process was carried out using the traditional laser extinction method. The effect of pres-sure on the soot yield and the magnitude of the temperature decrease was found. The analysis of the obtained data was carried out on the basis of numerical modeling using modern kinetic mechanisms of pyrolysis and oxidation of hydrocarbons. It is shown that a significant temperature decrease in the mixture found in the experiments is determined by the initial pyrolysis reactions, the contribution of which changes at different pres-sures.
В данной работе экспериментально и численно исследованы особенности сажеоб-разования при различных давлениях в процессе пиролиза этилена в ударной трубе. Диапазон давлений 6-26 бар и концентраций углерода 2.8-3.8 моль/м3 был выбран, исходя из анализа литературных данных. Диагностика процесса сажеобразования проводилась традиционным методом лазерной экстинкции. Обнаружено влияние давления на выход сажи и величину падения температуры. Анализ полученных данных проведен на основе численного моделирования с использованием совре-менных кинетических механизмов пиролиза и окисления углеводородов. Показано, что существенное падение температуры смеси, обнаруженное в экспериментах, определяется начальными реакциями пиролиза, вклад которых изменяется при раз-личных давлениях.
1. Pejpichestakul W., Ranzi E., Pelucci M., Frassoldati A., Cuoci A., Parente A., Faravelli T. Ex-amination of a soot model in premixed laminar flames at fuel-rich conditions // Proceedings of the Combustion Institute. 2019. Vol. 37. P. 1013-1021. DOI: 10.1016/j.proci.2018.06.104 2. Tian L., Schiener M.A., Lindstedt R.P. Fully coupled sectional modelling of soot particle dy-namics in a turbulent diffusion flame // Proceedings of the Combustion Institute. 2021. Vol. 38. P. 1365-1373. DOI: 10.1016/j.proci.2020.06.093 3. Nmira F., Bouffard A., Liu F., Consalvi J.-L. Assessment of a PAH-based soot production model in laminar coflow methane diffusion flames doped by gasoline surrogate fuels // Fire Safety Journal. 2024. Vol. 150. N. 104252. DOI: 10.1016/j.firesaf.2024.104252 4. Крестинин А.В., Кислов М.Б., Раевский А.В., Колесова О.И., Стесик Л.Н. Семенов Н.Н. К вопросу о механизме образования сажевых частиц // Кинетика и катализ. 2000. Т. 41. № 1, С. 102-111. DOI: 10.1007/BF02756146 5. Busillo E., Vlasov P.A., Savchenko V.I., Smirnov V.N., Arutyunov V.S. Thermodynamics of the formation of polyynes and aromatic species from methane and acetylene // Mendeleev Communication. 2024. Vol. 34, P. 762-765. DOI: 10.1016/j.mencom.2024.09.044 6. Hou D., Lindberg C.S., Manuputty M.Y., You X., Kraft M. Modelling soot formation in a benchmark ethylene stagnation flame with a new detailed population balance model // Com-bustion and Flame. 2019. Vol. 203. P. 56-71. DOI: 10.1016/j.combustflame.2019.01.035 7. Xu L., Yan F., Wang Yu., Chung S.H. Chemical effects of hydrogen addition on soot for-mation in counterflow diffusion flames: Dependence on fuel type and oxidizer composition // Combustion and flame. 2020. V. 213. P. 14-25. DOI: 10.1016/j.combustflame.2019.11.011 8. Eremin A.V., Gurentsov E.V., Kolotushkin R.N., Mikheyeva E.Yu. Dependence of soot prima-ry particle size on the height above a burner in target ethylene/air premixed flame // Combus-tion science and technology. 2022. Vol. 194. P. 2847-2863. DOI:10.1080/00102202.2021.1894138 9. Bauerle St., Karasevich Y., Slavov St., Tanke D., Thienel Th., Wagner H.G. Soot formation at elevated pressures and carbon concentrations in hydrocarbon pyrolysis // Symposium (Interna-tional) on Combustion. 1994, Vol. 25. P. 627-634. DOI: 10.1016/S0082-0784(06)80694-6 10. Iuliis S.D., Chaumeix N., Idir M., Paillard C.E. Scattering/extinction measurements of sot for-mation in a shock tube // Experimental Thermal and Fluid Science. 2008. Vol. 32. P. 1354-1362. DOI:10.1016/j.expthermflusci.2007.11.008 11. Агафонов Г.Л., Билера И.В., Власов П.А., Жильцова И.В., Колбановский Ю. А., Смирнов В. Н., Тереза А. М. Единая кинетическая модель сажеобразования при пиролизе и окис-лении алифатических и ароматических углеводородов в ударных волнах // Кинетика и катализ. 2016. Т. 57. №5. С. 571-587. 12. Дракон А.В., Еремин А.В., Коршунова М.Р., Михеева Е.Ю. Сажеобразование при пироли-зе этилена с добавками фурана и тетрогидрофурана // Физика горения и взрыва. 2022. Т. 58, № 4. С. 41-51. DOI: 10.15372/FGV2022040 13. Nativel D., Peuker S., Herzler J., Drakon A., Korshunova M., Mikheyeva E., Eremin A., Fikri M., Schulz C. Shock-tube study on the influence of oxygenated co-reactants on ethylene de-composition under pyrolytic conditions // Proceedings of Combustion Institute. 2023. Vol. 39. I. 1. P. 1099-1108. DOI: 10.1016/j.proci.2022.07.209 14. Eremin A. Formation of carbon nanoparticles from the gas phase in shock wave pyrolysis pro-cesses // Progress in Energy and Combustion Science. 2012. Vol. 38. P. 1-40. DOI: 10.1016/j.pecs.2011.09.002 15. Cuoci A., Frassoldati A., Faravelli T., Ranzi E. OpenSMOKE++: An object-oriented framework for the numerical modeling of reactive systems with detailed kinetic mechanisms // Computer Physics Communications. 2015. Vol. 192. P. 237-264. DOI: 10.1016/j.cpc.2015.02.014 16. Goodwin D.G., Moffat H.K., Schoegl I.,Speth R.L., Weber B.W. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes // URL: https://www.cantera.org, 2022. Version 2.6.0. DOI: 10.5281/zenodo.6387882 17. Baigmohammadi M., Patel V., Nagaraja S., Ramalingam A., Martinez S., Panigrahy S., Mo-hamed A., Somers K.P., Burke U., Heufer K.A., Pekalski A., Curran H.J. Comprehensive ex-perimental and simulation study of the ignition delay time characteristics of binary blended methane, ethane, and ethylene over a wide range of temperature, pressure, equivalence ratio, and dilution // Energy Fuels. 2020. Vol. 34. P. 8808-8823. DOI: 10.1021/acs.energyfuels.0c00960 18. Zhou C.-W., Li Y., Burke U., Banyon C., Somers K.P., Khan S., Hargis J.W., Sikes T., Petersen E.L., AlAbbad M., Farooq A., Pan Y., Zhang Y., Huang Z., Lopez J., Loparo Z., Vasu S.S., Curran H.J. An experimental and chemical kinetic modeling study of 1,3-butadiene combus-tion: Ignition delay time and laminar flame speed measurements // Combustion and Flame. 2018. Vol. 197. P. 423–438. DOI: 10.1016/j.combustflame.2018.08.006 19. "Chemical-Kinetic Mechanisms for Combustion Applications", San Diego Mechanism web page, Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego (http://combustion.ucsd.edu). 20. Eremin A., Gurentsov E., Mikheyeva E. Experimental study of temperature influence on car-bon particle formation in shock wave pyrolysis of benzene and benzene-ethanol mixtures // Combustion and Flame. 2015. Vol. 162. I. 1. P. 207-215. DOI: 10.1016/j.combustflame.2014.09.015