The paper presents the results of an experimental and numerical study of the effect of DME additives on the soot particles formation and growth in the acetylene/air flame. Soot particles produced in a flat, laminar, premixed acetylene/air flame with a content from 0 to 15.4% DME were studied in-situ by laser extinction (LE) method and ex-situ by transmission elec-tron microscopy (TEM). The method of laser extinction at wavelengths from 405 to 850 nm allowed to obtain data on the volume fraction of condensed phase in the flame, as well as on their optical band gap. The average soot particles size was extracted from the analysis of TEM exposures. Kinetic modeling was carried out using a modern kinetic mechanism of py-rolysis and oxidation of hydrocarbons, including a sectional model of the growth of soot par-ticles. As a result, it is shown that DME additives lead to a decrease in the soot yield, a de-crease in the average size of soot particles, as well as a change in their optical and electrical-ly conductive properties.
Влияние ДМЭ на процесс сажеобразования в пламени ацетилен/воздух
В работе представлены результаты экспериментального и численного исследования влияния добавки ДМЭ на процесс образования и роста сажевых частиц в пламени ацетилен/воздух. Частицы сажи, синтезированные в плоском, ламинарном, предварительно-перемешанном пламени ацетилен/воздух с содержанием от 0 до 15,4% ДМЭ, были исследованы in-situ методом лазерной экстинкции (ЛЭ) и ex-situ методом просвечивающей электронной микроскопии (ПЭМ). Метод лазерной экстинкции на длинах волн от 405 до 850 нм позволил получить данные об объемной доле конденсированных частиц в пламени, а также об их оптической ширине запрещенной зоны. Из анализа фотографий просвечивающего электронного микроскопа получена информация о среднем размере частиц. Проведено численное моделирование с использованием современного кинетического механизма пиролиза и окисления углеводородов, включающего секционную модель роста сажевых частиц. В результате показано, что добавки ДМЭ приводят к снижению выхода сажи, уменьшению среднего размера сажевых частиц, а также изменению их оптических и электропроводных свойств.
1. Bond T.C., Doherty S.J., Fahey D.W., Forster P.M., Berntsen T., DeAngelo B.J., et al. Bounding the role of black carbon in the climate system: A scientific assessment, Journal of Geophysical Re-search: Atmospheres, 2013, Vol. 118, N. 11, P. 5380. DOI: 10.1002/jgrd.50171 2. Gurentsov E.V., Eremin A.V., Kolotushkin R.N. Choice of Optical Properties of Soot Particles for Description of Solar Radiation Absorption in the Atmosphere and on the Earth’s Surface, Atmospheric and Oceanic Optics, 2022, Vol. 35, N. 6, P. 645. DOI: 10.1134/S10248560206015X 3. De Falco G., Colarusso C., Terlizzi M., Popolo A., Pecoraro M., Commodo M. Minutolo P., Sirignano M., D'Anna A., Aquino R.P., Pinto A., Molino A., Sorrentino R. Chronic Obstructive Pulmonary Disease-Derived Circulating Cells Release IL-18 and IL-33 under Ultrafine Particulate Matter Exposure in a Caspase-1/8-Independent Manner, Frontiers in Immunology, 2017, Vol. 8, P. 1415. DOI: 10.3389/fimmu.2017.01415 4. Mendiara T., Alzueta M.U., Millera A., Bilbao R. A Comparison of Acetylene Soot and Two Different Carbon Blacks: Reactivity to Oxygen and NO, International Journal of Chemical Reactor Engineering, 2007, Vol. 5, N. 1. DOI: 10.2202/1542-6580.1510 5. Singh M., Vander Wal R.L. Nanostructure Quantification of Carbon Blacks, C, 2018, Vol. 5, N. 1, P. 2. DOI: 10.3390/c5010002 6. Gurentsov E.V., Drakon A.V., Eremin A.V., Kolotushkin R.N., Mikheyeva E.Yu. Effect of the Size and Structure of Soot Particles Synthesized During Pyrolysis and Combustion of Hydrocarbons on Their Optical Properties, High Temperature, 2022, Vol.60, N. 3, P. 335. DOI: 10.1134/S0018151X22020055 7. Sorenson S.C. Dimethyl Ether in Diesel Engines: Progress and Perspectives, Journal of Engineering for Gas Turbines and Power, 2001, Vol. 123, N. 3, P. 652. DOI: 10.1115/1.1370373 8. Xu L., Wang Y., Liu D. Effects of oxygenated biofuel additives on soot formation: A comprehensive review of laboratory-scale studies, Fuel, 2022, Vol. 313, N. 122635. DOI: 10.1016/j.fuel.2021.122635 9. McEnally C.S., Köylü Ü.Ö., Pfefferle L.D., Rosner D.E. Soot volume fraction and temperature measurements in laminar nonpremixed flames using thermocouples, Combustion and Flame, 1997. Vol. 109, N. 4, P. 701. DOI: 10.1016/S0010-2180(97)00054-0 10. De Iuliis S., Maffi S., Cignoli F., Zizak G. Three-angle scattering/extinction versus TEM measurements on soot in premixed ethylene/air flame, Applied Physics B, 2011, Vol. 102, N. 4, P. 891. DOI: 10.1007/s00340-010-4344-8 11. Eremin A.V., Gurentsov E.V., Kolotushkin R.N., Mikheyeva E.Yu. Dependence of Soot Primary Par-ticle Size on the Height above a Burner in Target Ethylene/air Premixed Flame, Combustion Science and Technology, 2022, Vol. 194, N. 14, P. 2847. DOI: 10.1080/00102202.2021.1894138 12. Goodwin D.G., Moffat H.K., Schoegl I., Speth R.L., Weber B.W. Cantera: An Object-oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes, Zenodo, 2023. DOI: 10.5281/ZENODO.8137090 13. Ranzi E., Cavallotti C., Cuoci A., Frassoldati A., Pelucchi M., Faravelli T. New reaction classes in the kinetic modeling of low temperature oxidation of n-alkanes, Combustion and Flame, 2015, Vol. 162, N. 5, P. 1679. DOI: 10.1016/j.combustflame.2014.11.030 14. Saggese C., Ferrario S., Camacho J., Cuoci A., Frassoldati A., Ranzi E., Wang H., Faravelli T. Ki-netic modeling of particle size distribution of soot in a premixed burner-stabilized stagnation eth-ylene flame, Combustion and Flame, 2015, Vol. 162, N. 9, P. 3356. DOI: 10.1016/j.combustflame.2015.06.002 15. Burke U., Somers K.P., O’Toole P., Zinner C.M., Marquet N., Bourque G., Petersen E.L., Metcalfe W.K., Serinyel Z., Curran H.J. An ignition delay and kinetic modeling study of methane, dimethyl ether, and their mixtures at high pressures, Combustion and Flame, 2015, Vol. 162, N. 2, P. 315. DOI: 10.1016/j.combustflame.2014.08.014 16. Tauc J., Grigorovici R., Vancu A. Optical Properties and Electronic Structure of Amorphous Ger-manium, Physica Status Solidi B, 1966, Vol. 15, N. 2, P. 627. DOI: 10.1002/pssb.19660150224 17. Minutolo P., Gambi G., D’Alessio A. The optical band gap model in the interpretation of the UV-visible absorption spectra of rich premixed flames, Symp Int Combust, 1996, Vol. 26, N. 1, P. 951. DOI: 10.1016/S0082-0784(96)80307-9 18. Corbin J.C., Johnson T.J., Liu F., Sipkens T.A., Johnson M.P., Lobo P., Smallwood G.J. Size-dependent mass absorption cross-section of soot particles from various sources, Carbon, 2022, Vol. 192, P. 438. DOI: 10.1016/j.carbon.2022.02.037 19. Gurentsov E.V., Drakon A.V., Eremin A.V., Kolotushkin R.N., Mikheyeva E.Yu. The dependence of the sublimation temperature of the soot particles formed in the flames on their size and structure, Technical Physics, 2022, Vol. 92, N. 1, P. 53. DOI: 10.21883/TP.2022.01.52533.206-21