Исследование процесса разрушения фенола при высоких тепловых нагрузках



Study of the Phenol Destruction Process under High Thermal Loads

A brief review of works devoted to the destruction of phenolic materials is given. Sev-eral kinetic models of phenol decomposition are considered. Calculations of phenol decomposition according to the front model for a number of initial data are performed.

phenol, heat-shielding materials, composites, destruction, ablation


Том 25, выпуск 7, 2024 год



Проведён краткий обзор работ, посвящённых разрушению фенольных материалов. Рассмотрено несколько кинетических моделей разложения фенола. Выполнены расчёты разложения фенола по фронтовой модели для ряда исходных данных.

фенол, теплозащитные материалы, композиты, разрушение, абляция


Том 25, выпуск 7, 2024 год



1. Chen Y.-K., Milos F. S. Finite-Rate Ablation Boundary Conditions for Carbon-Phenolic Heat-Shield. NASA Ames Research Center, Moffett Field, CA 94035-1000.
2. Park C., “Calculation of Stagnation-Point Heating Rates Associated with Stardust Vehicle”, Proposed NASA Technical Memorandum, 2002.
3. Zhluktov, S.V., Abe T. Viscous Shock-Layer Simulation of Airflow past Ablating Blunt Body with Carbon Surface. Journal of Thermophysics and Heat Transfer, Vol. 13 No. 1, January-March 1999, pp. 50-59.
4. Wilcockson W. H. Stardust Sample Return Capsule Design Experience. AIAA Paper 98-2854, June 1998.
5. Olynick D. R., Chen Y.-K., Tauber M. E. Aerothermodynamics of the Stardust Sample Re-turn Capsule. J. of Spacecraft and Rockets, Vol. 36, No. 3, May-June 1999, pp. 442-462.
6. Milos F. S., Chen Y.-K. Two-Dimensional Ablation, Thermal Response and Sizing Program for Pyrolyzing Ablators. 46th AIAA Aerospace Sciences Meeting and Exhibit 7–10 January 2008, Reno, Nevada.
7. Lachaud J., Scoggins J. B., Magin T. E. et al. A Generic Local Thermal Equilibrium Model for Porous Reactive Materials Submitted to High Temperatures. International Journal of Heat and Mass Transfer 108 (2017) 1406–1417. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.11.067
8. Lachaud J., Cozmuta I., Mansour N. N. Multiscale Approach to Ablation Modeling of Phe-nolic Impregnated Carbon Ablators. J. of Spacecraft and Rockets, Vol. 47, No. 6, Novem-ber–December 2010. DOI: 10.2514/1.42681
9. Milos F. S., Chen Y.-K. Ablation Predictions for Carbonaceous Materials Using Two Data-bases for Species Thermodynamics. J. of Spacecraft and Rockets, Vol. 50, No. 2, March–April 2013. DOI: 10.2514/1.42681
10. Milos F. S., Chen Y.-K. Comprehensive Model for Multicomponent Ablation Thermochemis-try. AIAA Meeting Papers on Disc, January 1997, A9715226, NAS2-14031, AIAA Paper 97-0141. DOI: 10.2514/6.1997-141
11. Mansour N. N., Lachaud J., Magin T. E. et al. High-Fidelity Charring Ablator Thermal Re-sponse Model. 42nd AIAA Thermophysics Conference, 27–30 June 2011, Honolulu, Hawaii. DOI: 10.2514/6.2011-3124
12. Chen Y.-K., Milos F. S. Effects of Non-Equilibrium Chemistry and Darcy — Forchheimer Flow of Pyrolysis Gas for a Charring Ablator. J. of Spacecraft and Rockets, Vol. 50, No. 2, March–April 2013. DOI: 10.2514/1.A32289
13. Scoggins J. B. The Development of a Thermochemical Nonequilibrium Ablation and Pyroly-sis Model for Carbon-Phenolic Thermal Protection Systems. Raleigh, North Carolina, 2011 – 77 p.
14. Omidy A. D., Panerai F., Lachaud J. R. et al. Effects of Water Phase Change on the Material Response of Low-Density Carbon-Phenolic Ablators. Journal of Thermophysics and Heat Transfer
15. Bertin J. J., Conine W. D. Surface Recession of Phenolic Nylon in Low-Density Arc-Heated Air. J. of Spacecraft and Rockets, Technical Notes, November 1969. DOI: 10.2514/3.5582
16. Scala S. M., Gilbert L. M. Sublimation of Graphite at Hypersonic Speeds. AIAA Journal, Vol. 3, No. 9, September 1965, pp. 1635-1644.
17. Joatton R. C. Formulation of the Surface Ablation of a Silica-Nylon-Phenol Material. J. of Spacecraft and Rockets, Engineering Notes, May 1971. DOI: 10.2514/3.59688
18. Alanyalioglu Ç. O., Ozyoruk Y. Fully Transient Conjugate Analysis of Silica-Phenolic Char-ring Ablation Coupled with Interior Ballistic. AIAA Propulsion and Energy Forum, 19-22 August 2019, Indianapolis, IN. DOI: 10.2514/6.2019-3958
19. Milos F. S., Gasch M. J., Prabhu D. K. Conformal Phenolic Impregnated Carbon Ablator (C-PICA) Arcjet Testing Ablation and Thermal Response. AIAA SciTech 5-9 January 2015, Kis-simmee, Florida 53rd AIAA Aerospace Sciences Meeting. DOI: 10.2514/6.2015-1448
20. Milos F. S., Chen Y.-K. Ablation and Thermal Response Property Model Validation for Phe-nolic Impregnated Carbon Ablator. J. of Spacecraft and Rockets, Vol. 47, No. 5, September–October 2010. DOI: 10.2514/1.42949
21. F. Torres-Herrador, J. Coheur Competitive Kinetic Model for the Pyrolysis of the Phenolic Impregnated Carbon Ablator. Preprint, Aerospace Science and Technology February 12, 2020.
22. Torres-Herrador F., Meurisse J. B. E., Panerai F. et al. A High Heating Rate Pyrolysis Model for the Phenolic Impregnated Carbon Ablator (PICA) Based on Mass Spectroscopy Experi-ments. Journal of Analytical and Applied Pyrolysis (May 2019). doi:10/gf27n7
23. April G. C., Pike R. W., der Valle E. G. Modeling Reacting Gas Flow in the Char Layer of an Ablator. AIAA Journal, Vol. 9, No. 6, June 1971. DOI: 10.2514/3.6330
24. Chen Y.-K., Milos F. S. Ablation and Thermal Response Program for Spacecraft Heatshield Analysis. J. of Spacecraft and Rockets, Vol. 36, No. 3, May–June 1999. DOI: 10.2514/2.3469
25. J. Bertin, M. Nipper Effect of Gas Composition on the Ablation Performance of Phenolic Ny-lon. J. of Spacecraft and Rockets, Engineering Notes, October 1970. DOI: 10.2514/3.30146
26. Baer A. D., Hedges J. H., Seader J.D. et al. Polymer Pyrolysis over a Wide Range of Heating Rates. AIAA Journal, Vol. 15, No 10. DOI: 10.2514/3.7435
27. Stokes E. H. Kinetics of Pyrolysis Mass Loss from Cured Phenolic Resin. Journal of Ther-mophysics and Heat Transfer, Vol. 9 No. 2, April-June 1995, pp. 352–358. DOI: 10.2514/3.667
28. Panerai F., Martin A., Mansour N. N. et al. Flow-Tube Oxidation Experiments on the Carbon Preform of a Phenolic-Impregnated Carbon Ablator. Journal of Thermophysics and Heat Transfer, Vol. 28 No. 2, April-June 2014, pp. 181–190. DOI: 10.2514/1.T4265
29. Milos F. S., Chen Y.-K., Gökçen T. Nonequilibrium Ablation of Phenolic Impregnated Car-bon Ablator. J. of Spacecraft and Rockets, Vol. 49, No. 5, September–October 2012, pp. 894–904. DOI: 10.2514/1.A32298
30. Chidley J. D., Seader J. D. Effect of Additives on Ablation of Phenolic-Silica Composites. J. of Spacecraft and Rockets, Vol. 10, No. 1, January 1973, pp. 7–14. DOI: 10.2514/3.27732
31. Trick K. A., Saliba T. E. Mechanisms of the Pyrolisys of Phenolic Resin in a Carbon/Phenolic Composite. Carbon Vol. 33, No. 11, pp. 1509-1515, 1995.
32. Agrawal P., Prabhu D., Milos F. S. et al. Investigation of Performance Envelope for Phenolic Impregnated Carbon Ablator (PICA). AIAA SciTech, 4-8 January 2016, San Diego, Califor-nia, USA, 54th AIAA Aerospace Sciences Meeting. DOI: 10.2514/6.2016-1515
33. Bennett A., Payne D. R., Court R. W. Pyrolytic and Elemental Analysis of Decomposition Products from a Phenolic Resin. Journal Macromolecular Symposia, Vol. 339, 2014, pp. 38–47. DOI: 10.1002/masy.201300136
34. Bessire B., Lahantar S. A., Minton T.K. Pyrolysis of Phenolic Impregnated Carbon Ablator (PICA). ACS Applied Materials & Interfaces, 2014. DOI: 10.1021/am507816f
35. Bessire B., Minton T. K. Decomposition of Phenolic Impregnated Carbon Ablator (PICA) as a Function of Temperature and Heating Rate. ACS Applied Materials & Interfaces, 2017. DOI: 10.1021/acsami.7b03919
36. Sykes G. F. Decomposition Characteristic of a Char-Forming Phenolic Polymer Use for Abla-tive Composites. NASA TN D-3810, February, 1967
37. Wong H. W.; Peck J., Bonomi R. E. et al. Quantitative Determination of Species Production from Phenol-Formaldehyde Resin Pyrolysis. Polym. Deg. Stab. 2015, 122, 122-131. DOI:10.1016/j.polymdegradstab.2014.12.020
38. Wong H. W.; Peck J.; Assif J. et al. Detailed Analysis of Species Production from the Pyroly-sis of the Phenolic Impregnated Carbon Ablator. J. Anal. Appl. Polym. Sci. 2016, Vol 122, pp. 258–267. DOI: 10.1016/j.jaap.2016.09.016
39. Pecullan M. S. Pyrolysis and Oxidation Kinetics of Anisole and Phenol. PhD thesis,Princeton University, Department of Mechanical and Aerospace Engineering, 1997.
40. Brezinsky K., Pecullan M., Glassman I. Pyrolysis and Oxidation of Phenol. J. Phys. Chem. A, Vol. 102, 1998, pp. 8614–8619.
41. Scoggins J. B., Mansour N. N., Hassan H. A. Development of a Reduced Kinetic Mechanism for PICA Pyrolysis Products. 42nd AIAA Thermophysics Conference, 27 - 30 June 2011, Honolulu, Hawaii. DOI: 10.2514/6.2011-3126.
42. Селезнев Р. К. Исследование обобщенного метода Ньютона для решения системы дифференциальных уравнений химической кинетики на примере горения углеводородов в кислороде//Физико-химическая кинетика в газовой динамике. 2013. Т.14, вып. 4. http://chemphys.edu.ru/issues/2013-14-4/articles/430/
43. McBride B. J., Gordon S., Reno M. A. Coefficients for calculating thermodynamic and transport properties of individual species. Technical Memorandum TM-4513, NASA, 1993.
44. Pike, R. Thermodynamic properties in polynomial form for carbon, hydrogen, nitrogen, and oxygen systems from 300 to 15000 K. NASA Langley Research Center, November 15, 1970.