Development and application of catalysis models in problems of high-speed flow of dissociated air around blunt bodies
The paper presents an overview of the main results obtained at the Institute of Mechanics, M.V.Lomonosov Moscow State University over the past 5 years in the study of physical and chemical processes occurring on the surface of thermal protection materials of high-speed aircraft. Based on the methods of quantum mechanics and the theory of the transition state, closed kinetic models of the interaction of dissociated air with catalytic surfaces have been created, which allows for precise setting of boundary conditions in numerical modeling in problems of flow around bodies. The influence of catalytic processes on the heat flux, structure and chemical composition of the shock layer has been studied using the example of high-speed flow around a sphere simulating entry into the Earth's atmosphere and flow in a high-frequency plasmatron.
dissociated air, nitrogen oxide, heterogeneous catalysis, heat exchange, HF plasmatron, β-cristobalite, density of adsorption sites
В работе приведен обзор основных результатов, полученных в НИИ механики МГУ за последние 5 лет при исследовании физико-химических процессов, протекающих на поверхности теплозащитных материалов высокоскоростных летательных аппаратов. На основе методов квантовой механики и теории переходного состояния созданы замкнутые кинетические модели взаимодействия диссоциированного воздуха с каталитическими поверхностями, что позволяет точно задавать граничные условия при численного моделирования в задачах обтекания тел. Исследовано влияние каталитических процессов на тепловой поток, структуру и химический состав ударного слоя на примере высокоскоростного обтекания сферы, моделирующего вход в атмосферу Земли, и течения в ВЧ-плазмотроне.
диссоциированный воздух, оксид азота, гетерогенный катализ, теплообмен, ВЧ-плазмотрон, β-кристобалит, плотность адсорбционных центров
1. Bertin J.J. Hypersonic aerothermodynamics. Washington: American Institute of Aeronautics and Astronautics, 1994. 608 p. 2. Anderson J.D. Hypersonic and High-Temperature Gas Dynamics – Second edition. Reston: American Institute of Aeronautics and Astronautics, 2006. 811 p. 3. Hirschel E.H. Basics of Aerothermodynamics. Heidelberg: Springer Berlin Heidelberg, 2005. 412 p. 4. Dorrance W.H. Viscous Hypersonic Flow: Theory of Reacting and Hypersonic Boundary Layers. McGraw-Hill, New York, 1962. 352 p. 5. Kogan M.N. Rarefied gas dynamics. New York: Plenum Press, 1969. 515 p. 6. Bird G.A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford: Clarendon Press, 1994. 458 p. 7. Patterson G.N. Molecular Flow of Gases. New York: John Willey and Sons, 1956. 217 p. 8. Shidlovskiy V.P. Introduction to Dynamics of Rarefied Gases. New York: Elsevier, 1967. 168 p. 9. Livadiotti S. et al. A review of gas-surface interaction models for orbital aerodynamics applications // Prog. Aerosp. Sci. 2020. Vol. 119, № June. P. 100675. 10. Chorkendorff I., Niemantsverdriet J.W. Concepts of Modern Catalysis and Kinetics, 3rd Edition. Third. WILEY-VCH VerlagGmbH&Co.KGaA, Boschstr. 12, 69469Weinheim, Germany, 2017. 524 p. 11. Goulard R. On Catalytic Recombination Rates in Hypersonic Stagnation Heat Transfer // J. Jet Propuls. 1958. Vol. 28, № 11. P. 737–745. 12. Rosner D.E. Catalytic Probes for the Determination of Atom Concentrations in High Speed Gas Streams // ARS J. 1962. Vol. 32, № 7. P. 1065–1073. 13. Hartunian R.A., Liu S.W. Slow flow of a dissociated gas about a catalytic probe // Phys. Fluids. 1963. Vol. 6, № 3. P. 349–354. 14. Scott C.D., Derry S.M. Catalytic Recombination Space Shuttle Heating. // Prog. Astronaut. Aeronaut. 1983. Vol. 85. P. 123–148. 15. Stewart D. et al. Development of a Catalytic Coating for a Shuttle Flight Experiment // 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. № July. P. 1–15. 16. Stewart D., Kolodziej P. Wall catalysis experiment on AFE // 23rd Thermophysics, Plasmadynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. P. 1–10. 17. Gupta R.N. Reevaluation of flight-derived surface recombination-rate expressions for oxygen and nitrogen // J. Spacecr. Rockets. 1996. Vol. 33, № 3. P. 451–453. 18. Wise H., Wood B.J. Reactive Collisions Between Gas and Surface Atoms // Advances in Atomic and Molecular Physics / ed. Bates D.R., Estermann I. New York, London: Academic Press, 1968. P. 291–353. 19. Hirschfelder J.O., Curtiss C.F., Bird R.B. The Molecular Theory of Gases and Liquids. New York: John Willey and Sons, 1954. 1219 p. 20. Nasuti F., Barbato M., Bruno C. Material-dependent catalytic recombination modeling for hypersonic flows // J. Thermophys. Heat Transf. American Inst. Aeronautics and Astronautics Inc., 1996. Vol. 10, № 1. P. 131–136. 21. Seward W.A., Jumper E.J. Model for oxygen recombination on silicon-dioxide surfaces // J. Thermophys. Heat Transf. 1991. Vol. 5, № 3. P. 284–291. 22. Willey R.J. Comparison of kinetic models for atom recombination on high-temperature reusable surface insulation // J. Thermophys. Heat Transf. 1993. Vol. 7, № 1. P. 55–62. 23. Kurotaki T. Construction of catalytic model on SiO2-based surface and application to real trajectory (AIAA-2000-2366) // 34th Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. 24. Deutschmann O., Riedel U., Warnatz J. Modeling of Nitrogen and Oxygen Recombination on Partial Catalytic Surfaces // J. Heat Transfer. 1995. Vol. 117, № 2. P. 495–501. 25. Fertig M., Herdrich G., Auweter-Kurtz M. SiO2 Catalysis Modelling for CFD Calculations // 39th AIAA Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. № June. 26. Morón V. et al. Recombination and chemical energy accommodation coefficients from chemical dynamics simulations: O/O 2 mixtures reacting over a β-cristobalite (001) surface // Phys. Chem. Chem. Phys. 2011. Vol. 13, № 39. P. 17494–17504. 27. Arasa C., Gamallo P., Sayós R. Adsorption of atomic oxygen and nitrogen at β-cristobalite (100): A density functional theory study // J. Phys. Chem. B. 2005. Vol. 109, № 31. P. 14954–14964. 28. Kovalev V.L. et al. Analysis of heterogeneous recombination of oxygen atoms on aluminum oxide by methods of quantum mechanics and classical dynamics // Acta Astronaut. 2011. Vol. 68, № 7–8. P. 686–690. 29. Cacciatore M., Rutigliano M., Billing G.D. Eley-Rideal and Langmuir-Hinshelwood recombination coefficients for oxygen on silica surfaces // J. Thermophys. heat Transf. AIAA, 1999. Vol. 13, № 2. P. 195–203. 30. Rutigliano M. et al. N atoms recombination on a silica surface: A global theoretical approach // Surf. Sci. 2006. Vol. 600, № 18. P. 4239–4246. 31. Zazza C. et al. Oxygen adsorption on β-quartz model surfaces: Some insights from density functional theory calculations and semiclassical time-dependent dynamics // J. Phys. Chem. A. 2012. Vol. 116, № 9. P. 1975–1983. 32. Rutigliano M., Cacciatore M. Recombination of Oxygen Atoms on Silica Surface: New and More Accurate Results // J. Thermophys. Heat Transf. 2016. Vol. 30, № 1. P. 247–250. 33. Kovalev V.L., Pogosbekyan M.Y. Simulation of heterogeneous atom recombination on spacecraft heat shield coatings using the methods of molecular dynamics // Fluid Dyn. 2007. Vol. 42, № 4. P. 666–672. 34. Kovalev V.L., Kroupnov A.A., Vetchinkin A.S. Quantum mechanics calculation of catalytic properties of a copper sensor for prediction of flow characteristics in plasmatron // Acta Astronaut. 2015. Vol. 117. 35. Buchachenko A.A., Kroupnov A.A., Kovalev V.L. First-principle study of atomic oxygen and nitrogen adsorption on (111) β-cristobalite as a model of thermal protection coverage // Acta Astronaut. 2014. Vol. 100, № 1. P. 40–46. 36. Buchachenko A.A., Kroupnov A.A., Kovalev V.L. Elementary stage rate coefficients of heterogeneous catalytic recombination of dissociated air on thermal protective surfaces from ab initio approach // Acta Astronaut. 2015. Vol. 113. P. 142–148. 37. Rideal E.K. Concepts in Catalysis. New York: Academic Press, 1968. 113 p. 38. Wright M.R. An Introduction to Chemical Kinetics // John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England. 2004. 39. Hinshelwood C.N. The kinetics of chemical change in gaseous systems. Second. Oxford: Clarendon Press, 1929. 266 p. 40. Frisch M.J. et al. Gaussian 09 // Gaussian, Inc., Wallingford CT. 2009. 41. Clark T. A handbook of computational chemistry : a practical guide to chemical structure and energy calculations. New York: Wiley, 1985. 332 p. 42. Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. // J. Am. Chem. Soc. 1918. Vol. 40, № 9. P. 1361–1403. 43. Norman P., Schwartzentruber T., Cozmuta I. A computational chemistry methodology for developing an oxygen-silica finite rate catalytic model for hypersonic flows // 42nd AIAA Thermophysics Conference. American Institute of Aeronautics and Astronautics Inc., 2011. 44. Norman P., Schwartzentruber T. A computational Chemistry methodology for Developing an oxygen-silica Finite rate catalytic model for hypersonic Flows: Part II // 43rd AIAA Thermophysics Conference 2012. American Institute of Aeronautics and Astronautics Inc., 2012. 45. Utyuzhnikov S.V., Tirskiy G.A. Hypersonic aerodynamics and heat transfer. New York: Begell, 2014. 536 p. 46. Kovalev V.L., Krupnov A.A., Tirskii G.A. Solution to Equations for the Viscous Shock Layer by the Method of Simple Global Iterations over the Pressure Gradient and Shock-Wave Shape // Physics-Doklady. 1994. Vol. 39, № 9. P. 665–668. 47. Kovalev V.L., Krupnov A.A., Tirskii G.A. Method of Global Iterations for Solving Problems of Ideal-Gas Hypersonic Flow Past Blunt Bodies // Physics-Doklady. 1994. Vol. 39, № 11. P. 823–826. 48. Losev S.A. et al. Thermochemical nonequilibrium kinetic models in strong shock waves on air // 6th Joint Thermophysics and Heat Transfer Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. 49. Williams F.A. Combustion Theory. Basic Books, 1985. 0–680 p. 50. Гордеев А.Н., Колесников А.Ф., Сахаров В.И. Течение и теплообмен в недорасширенных струях индукционного плазмотрона // Известия РАН Механика жидкости и газа РАН. МЖГ. 2011. № 4. P. 130–142. 51. Gordeev A.N., Kolesnikov A.F., Yakushin M.I. An Induction Plasma Application to “Buran’s” Heat Protection Tiles Ground Tests // SAMPE J. 1992. Vol. 28, № 3. P. 29−33. 52. Колесников А.Ф., Сахаров В.И. Экстраполяция параметров теплообмена модели в недорасширенных струях диссоциированного воздуха в ВЧ-плазмотроне на условия обтекания сферы высокоскоростным потоком в земной атмосфере // Физико-химическая кинетика в газовой динамике. 2015. Vol. 16, № 2. 53. Колесников А.Ф., Сахаров В.И. Подобие теплообмена модели в недорасширенных струях диссоциированного воздуха в ВЧ-плазмотроне и при обтекании сферы высокоскоростным потоком в земной атмосфере // Известия Российской академии наук. Механика жидкости и газа. 2016. № 3. P. 110–116. 54. Васильевский С., Колесников А., Сахаров В. Исследование точности моделирования конвективного теплообмена в дозвуковых струях диссоциированного воздуха в ВЧ-плазмотроне // Физико-химическая кинетика в газовой динамике. 2020. Vol. 21, № 2. P. 1–13. 55. Gordeev A.N., Kolesnikov A.F. High-Frequency Induction Plasmatrons of the VGU Series // Topical Problems inMechanics. Physico-ChemicalMechanics of Liquids and Gases (in Russian). Moscow: Nauka, 2010. P. 151. 56. Чаплыгин А. et al. Экспериментальное и численное исследование теплового эффекта катализа на поверхностях металлов и кварца в недорасширенных струях диссоциированного воздуха // Физико-химическая кинетика в газовой динамике. 2018. Vol. 19, № 4. P. 1–11. 57. Simonenko E.P. et al. Effect of 2 vol % Graphene Additive on Heat Transfer of Ceramic Material in Underexpanded Jets of Dissociated Air // Russ. J. Inorg. Chem. 2022. Vol. 67, № 12. P. 2050–2061. 58. Chaplygin A. V. et al. Short-Term Oxidation of HfB2-SiC Based UHTC in Supersonic Flow of Carbon Dioxide Plasma // Plasma. 2024. Vol. 7, № 2. P. 300–315. 59. Afonina N.E., Gromov V.G., Sakharov V.I. HIGHTEMP technique of high temperature gas flows numerical simulations // Proc. 5th Europ. Symp. on Aerothermodyn. Space Vehicles. Cologne, 2004. P. 323–328. 60. Сахаров В.И. Численное моделирование термически и химически неравновесных течений и теплообмена в недорасширенных струях индукционного плазмоторона // Известия РАН Механика жидкости и газа РАН МЖГ. 2007. № 6. P. 157–168. 61. Галкин С. et al. Исследование влияния формы модели на конвективные тепловые потоки к холодной каталитической поверхности в сверхзвуковых струях диссоциированного воздуха в ВЧ-плазмотроне // Физико-химическая кинетика в газовой динамике. 2021. Vol. 22, № 3. P. 21–30. 62. Романовский Б.В. Основы катализа. Москва: БИНОМ. Лаборатория знаний, 2015. 1–172 p. 63. Temkin M.I. The transition state in surface reaction // Acta Physicochim. 1938. Vol. 8, № 2. P. 141–170. 64. Гурвич Л.В., Вейц И.В., Медведев В.А. Термодинамические свойства индивидуальных веществ. 3rd ed. Москва: Наука, 1978. 65. Ибрагимова Л.Б., Смехов Г.Д., Шаталов О.П. Константы скорости диссоциации двух-атомных молекул в термически равновесных условиях // Известия РАН. Механика жидкости и газа. 1999. № 1. P. 181–186. 66. Лосев С., Макаров В., Погосбекян М. Модель физико-химической кинетики за фронтом очень сильной ударной волны в воздухе // Известия РАН. Механика жидкости и газа. 1995. № 2. P. 169–182. 67. Park C. et al. Review of chemical-kinetic problems of future NASA missions. II - Mars entries // J. Thermophys. Heat Transf. 1994. Vol. 8, № 1. P. 9–23. 68. Reid R.C., Prausnitz J.M., Sherwood T.K. The Properties of Gases and Liquids. New York: McGraw-Hil, 1977. 688 p. 69. Васильевский, С.А. Колесников А.Ф. Численное моделирование течений равновесной индукционной плазмы в цилиндрическом канале плазмотрона // Известия РАН. Механика жидкости и газа. 2000. № 5. P. 164–173. 70. Kroupnov A.A., Pogosbekian M.J. Interaction of dissociated air with the surface of β-cristobalite material // Acta Astronaut. 2023. Vol. 203. P. 454–468. 71. Kroupnov A.A., Pogosbekian M.J. The influence of heterogeneous catalytic processes on the heat flux to the surface and the chemical composition of the shock layer at high-speed flow around blunt bodies // Acta Astronaut. 2024. Vol. 219. P. 517–531. 72. Крупнов А.А., Погосбекян М.Ю., Сахаров В.И. Гетерогенная рекомбинация оксида азота в задачах высокоскоростного обтекания затупленных тел потоком диссоциированного воздуха: влияние на химический состав газа и теплообмен с поверхностью // Физико-химическая кинетика в газовой динамике. 2024. Vol. 25, № 5. P. 1–14. 73. Krupnov A.A., Pogosbekyan M.Y., Sakharov V.I. New Models of Heterogeneous Catalysis for Numerical Study of Flows and Heat Transfer in an Induction HF Plasmatron // Fluid Dyn. 2024. 74. Крупнов А.А., Погосбекян М.Ю., Сахаров В.И. Применение моделей гетерогенного катализа при решении задач струйного обтекания моделей из меди для условий экспериментов на индукционном ВЧ-плазмотроне // Физико-химическая кинетика в газовой динамике. 2023. Vol. 24, № 4. P. 1–16.