Экспериментальное исследование тепловых потоков в газодинамических установках не-прерывного и кратковременного действия



Experimental research of heat fluxes in wind tunnels and shock tubes

The article describes the methods and results of the study of heat transfer in the wind tunnel and shock tubes in the presence of shock waves in the flow. In the first case, the research was carried out using a thermal imager and infrared illuminators, which allowed to determine the patterns of heat transfer on the inner walls of the wind tunnel. The study was carried out for the Mach number 2.48 and the turbulent flow regime. The shock wave was initiated using a plane wedge mounted on the upper wall of the setup test sec-tion. A high-speed thermoelectric detector with a resolution of up to 1 microsecond was used to study heat fluxes in the shock tubes. The experiments were carried out on two diaphragm type shock tubes at the Mach number behind the shock wave of 15.

shock tube, wind tunnel, heat flux, infrared thermography, shock waves

Павел Владимирович Козлов, Сергей Станиславович Попович, Андрей Геннадьевич Здитовец, Иван Алексеевич Загайнов

Том 25, выпуск 6, 2024 год



В статье приводится описание методик и результатов исследования теплообмена в аэродинамических установках непрерывного и кратковременного действия при наличии в потоке ударных волн. В первом случае исследования проводятся с ис-пользованием тепловизора и инфракрасных иллюминаторов, позволяющих опреде-лить закономерности теплообмена на внутренних стенках аэродинамической уста-новки непрерывного действия. Исследование проведено для числа Маха 2.48 и турбулентного режима течения. Ударная волна инициировалась с помощью плос-кого клина, установленного на верхней стенке рабочей части установки. Для ис-следования тепловых потоков в ударной трубе использовался быстродействующий термоэлектрический детектор разрешением до 1 мкс. Эксперименты проводились на двух ударных трубах диафрагменного типа при числе Маха за ударной волной 15.

ударная труба, аэродинамическая установка, тепловой поток, инфракрасная термография, ударная волна

Павел Владимирович Козлов, Сергей Станиславович Попович, Андрей Геннадьевич Здитовец, Иван Алексеевич Загайнов

Том 25, выпуск 6, 2024 год



1. Shang J. S., Surzhikov S. T. Nonequilibrium radiative hypersonic flow simulation // Progress in Aerospace Sciences. 2012. Vol. 53, no. 46. https://doi.org/10.1016/J.PAEROSCI.2012.02.003
2. Brandis A. M., Johnson C. O., Cruden B. A. Investigation of Non-equilibrium Radiation for Earth Entry // AIAA Paper. 2016. No. 2016-3690. 19 p.
3. Surzhikov S. T., Shuvalov M. P. Checking computation data on radiative and convectional heating of next generation spacecraft // High Temperature. 2013. Vol. 51, pp. 408–420. https://doi.org/10.1134/S0018151X13030061
4. Johnston C. O., Hollis B.R., Sutton K. Nonequilibrium Stagnation_Line Radiative Heating for Fire_II // The Journal of Spacecraft and Rockets. 2008. V. 45, no. 6, pp. 1185. http://dx.doi.org/10.2514/1.33008
5. Olynick D. R., Henline W. D., Hartung L. C., Candler G. V. Comparison of Coupled Radiative Navier_Stokes Flow Solutions with the Project Fire_II Flight Data // AIAA. 1994. No. 94_1955. http://dx.doi.org/10.2514/3.712
6. Surzhikov S. T. Investigation of the influence of kinetic models on the results of calculations of radiation-convective heating of a spacecraft in a flight experiment FIRE-II // Chemical Phys-ics Reports. 2008. Vol.27, no. 10, pp.63-76.
7. Leontiev A. I., Lushchik V. G., Makarova M. S., Popovich S. S. The temperature recovery fac-tor in a compressible turbulent boundary layer // High Temperature. 2022. Vol. 60, no. 3, pp. 409–431. http://dx.doi.org/10.1134/S0018151X22030117
8. Mee D. J., Chiu H., Ireland P. T. Technique for detailed heat transfer measurements in cold supersonic blowdown tunnels using thermochromic liquid crystals // International Journal of Heat and Mass Transfer. 2002. Vol. 45. http://dx.doi.org/10.1016/S0017-9310(02)00050-9
9. Moffat R. J. What's new in convective heat transfer? // International Journal of Heat and Fluid Flow. 1998. Vol. 19, pp. 90-101.
10. Hayes J. R., Neumann R. D. Introduction to the aerodynamic heating analysis of supersonic missiles // Hemsch M., Nielsen J. (Eds.). Tactical Missile Aerodynamics. Progress in Astro-nautics and Aeronautics Series. AIAA. 1992. Vol. 142, pp. 63-114.
11. Lavagnoli S., Maesschalck C. D., Paniagua G. Uncertainty analysis of adiabatic wall tempera-ture measurements in turbine experiments // Applied Thermal Engineering. 2015. Vol. 82. http://dx.doi.org/10.1016/j.applthermaleng.2015.02.048
12. Neumann R. D., Freeman D. C. Experimental Measurement of Aerodynamic Heating About Complex Shapes at Supersonic Mach Numbers // The Journal of Spacecraft and Rockets. 2012. Vol. 49, no. 6, pp. 1080-1087. http://dx.doi.org/10.2514/1.60054
13. Leontiev A. I., Popovich S. S., Vinogradov U. A., Strongin M. M. Experimental research of supersonic aerodynamic cooling effect and its application for energy separation efficiency // Proceedings of the 16th International Heat Transfer Conference, IHTC-16. 2018. No. 212244. Beijing, China. 8 p.
14. Strongin M. M., Vinogradov U. A., Zditovets A. G.,Kiselev N. A., Popovich S. S. Applying of National Instruments Technologies in Experimental Research of Thermal Gas Dynamics Pro-cesses // Software Engineering. 2017. No. 5, pp. 230–240. https://doi.org/10.17587/prin.8.230-240
15. Popovich S. S. Experimental Automation and Data Processing Features for Supersonic Heat Transfer Research// Software Engineering. 2018. No. 1, pp. 35–45. https://doi.org/10.17587/prin.9.35-45
16. Popovich S. S. Aerodynamic cooling of the wall in the trace of a supersonic flow behind a backward-facing ledge // Fluid Dynamics. 2022. Vol. 57, no. 1., pp. 57–64. http://dx.doi.org/10.1134/S0015462822601310
17. Schultz D. L., Jones T. V. Heat-transfer measurements in short-duration hypersonic facilities. AGARDograph. 1973. Vol. 165. 149 p.
18. Moffat R. J. Describing the uncertainties in experimental results // Experimental and Fluid Sci-ence. 1988, pp. 3-17. https://doi.org/10.1016/0894-1777%2888%2990043-X
19. Zhang Y., Tan H. J., Tian F. C., Zhuang Y. Control of incident shock/boundary-layer interac-tion by a two-dimensional bump // AIAA J. 2014. Vol. 52, pp. 767–776. http://dx.doi.org/10.2514/1.J052786
20. Gu S., Oliver H. Capabilities and limitations of existing hypersonic facilities // Prog. Aerospace Sci. 2020. Vol. 113, no. 100607. http://dx.doi.org/10.1016/j.paerosci.2020.100607
21. Pavlov V., Gerasimov G., Levashov V., Kozlov P., Zabelinsky I., Bykova N. Shock Tube Study of Ignition Delay Times for Hydrogen–Oxygen Mixtures // Fire. 2023. Vol. 6(11), no. 435. http://dx.doi.org/10.3390/fire6110435
22. Kozlov P.V., Zabelinskii I.E., Bikova N.G., Gerasimov G.Ya., L evashov V.Yu. Ignition of propane-air mixtures in shock tube at pressure of 30 atm // Physical-chemical kinetics in gas dynamics. 2021. Vol. 22, no. 3. http://dx.doi.org/10.33257/PhChGD.22.3.942
23. Kozlov P. V., Bykova N. G., Gerasimov G. Ya., Levashov V. Yu., Kotov M. A., Zabelinsky I. E., Radiation properties of air behind strong shock wave // Acta Astronaut. 2024. Vol. 214, pp. 303-315. http://dx.doi.org/10.1016/j.actaastro.2023.10.033
24. Kozlov P.V., Zabelinskii I.E., Bykova N.G., Gerasimov G.Ya, Levashov V.Yu. Radiation Characteristicsof Shock-Heated Air in the Visible and Infrared Spectral Ranges // Fluid Dynam-ics. 2023, No. 5. pp. 138-146. http://dx.doi.org/10.31857/S1024708423600148
25. Kotov M. A., Shemyakin A. N., Solovyov N. G., et al. Performance assessment of thermoelec-tric detector for heat flux measurement behind a reflected shock of low intensity // Appl. Therm. Eng. 2021. Vol. 195, no. 117143. http://dx.doi.org/10.1016/j.applthermaleng.2021.117143
26. Kotov M. A., Kozlov P.V., Gerasimov G. Ya, Levashov V. Yu, Shemyakin A. N., Solovyov N. G., Yakimov M. Yu, Glebov V. N., Dubrova G. A., Malyutin A.M. Thermoelectric detector application for measuring the ignition delay time in a shock heated combustible mixture // Acta Astronautica. 2023. Vol. 204, pp. 787-793. http://dx.doi.org/10.1016/j.actaastro.2022.11.036