Computational study of some classical molecular dynamics algorithms




The paper presents the results of molecular dynamics modeling of the initial phase of thermalization of translational degrees of freedom of particles of a microcanonical en-semble with different initial velocity distributions. The Maxwellian initial distribution at a fixed temperature, an ensemble of particles at a constant velocity, and an equiprobable ve-locity distribution in a given range are considered. The problem of decay of an arbitrary discontinuity in a molecular dynamics cell is solved. The relaxation times of the initial ar-bitrary particle distribution to the steady-state Maxwellian distribution are determined in the temperature range K and pressures from 0.01 to 2 atm.

molecular dynamics method, microcanonical ensemble, thermalization of a statistical ensemble of structureless particles


Volume 25, issue 5, 2024 year


Расчетное исследование некоторых алгоритмов классической молекулярной динамики

Представлены результаты молекулярно-динамического моделирования началь-ной фазы термализации поступательных степеней свободы частиц микроканони-ческого ансамбля при задании различных исходных распределениях по скоро-стям. Рассмотрены максвелловское начальное распределение при фиксированной температуре, ансамбль частиц при постоянной скорости и при равновероятном распределении скоростей в заданном диапазоне. Решена задача о распаде произ-вольного разрыва в молекулярно-динамической ячейке. Определены времена ~ 10-9c релаксации исходного произвольного распределения частиц к установив-шемуся максвелловскому в диапазоне температур Т ~ 100 ÷ 10000 К и давлений от 0.01 до 2 атм.

метод молекулярной динамики, микроканонический ансамбль, термали-зация статистического ансамбля бесструктурных частиц


Volume 25, issue 5, 2024 year



1. Heerman D.W., Computer Simulations Methods in Theoretical Physics, Springer-Verlag. Berlin, 1990, 145 p.
2. Frenkel D., Smit B., Understanding Molecular Simulation, Academic Press, 2002, 638 p.
3. Rapoport D. C., The art of molecular dynamics simulation, Cambridge University Press, 2004, 549 p.
4. Shnol E. E., Grivtsov A. G., Tovbin Yu. K., et al., Molecular Dynamics Method in Physical Chemistry, Moscow: Nauka, 1996, 336 p. [in Russian].
5. Computer modeling methods for polymer and biopolymer research. Ed. Ivanov V. A., Rabino-vich A. A., Khokhlov A. R., M.: LIBROCOM Book House, 2009, 696 p. [in Russian].
6. The collected Works of J. Willard Gibbs Ph.D. LLD. In two volumes, Longmans, Green and Co, New York, 1931.
7. Baranov V. B., Krasnobaev K. V., Hydrodynamic theory of space plasma, M.: Nauka. 1977. 333 p. [in Russian].
8. Baranov V. B., Hydroaeromechanics and Introduction to Magnetic Hydrodynamics. M.: MSU. 2018. 255 p. [in Russian].
9. Boltzman L., Lectures on the theory of gases, Moscow, State Publishing House of Technical and Theoretical Literature. 1953 [in Russian].
10. Baranov V. B., Gas Dynamic Models of the Interaction between the Solar Wind and cometary atmospheres, Fluid Dynamics, 2023, no.1, pp. 12-30. DOI: 10.31857/S0568528122700037
11. Stupochenko E.V., Losev S.A., Osipov A.I., Relaxation processes in shock waves, M.: Nauka. 1965. 454 p. [in Russian].
12. Kantor A. L., Long L. N., Micci M. M., Molecular Dynamics Simulation of Dissociation Kinet-ics, J. of Thermophysics and Heat Transfer, 2001, vol. 15, no. 4, p. 478. DOI:10.2514/6.2000-213
13. Kotov D. V., Surzhikov S. T., Molecular dynamics simulation of the rate of dissociation and of the time of vibrational relaxation of diatomic molecules, High Temperatures, 2008, vol.46, pp. 604-613.
14. Landau L. D., Lifshits E. M., Theoretical Physics T.1. Mechanics, M.: “Nauka”, 1965. 204 p. [in Russian].
15. Zeldovich Ya. B., Raiser Yu. P., Physics of shock waves and high-temperature hydrodynamic phenomena, M.: Nauka, 1966, 686 p. [in Russian].
16. Landau L. D., Lifshits E. M., Theoretical Physics T. V. Statistical Physics. Part 1, M.: “Nauka” 1976. 583 p. [in Russian].
17. Surzhikov S. T. Application of Quasistationary eRC-Models for Calculating Nonequilibrium Ra-diation of Shock Waves at Velocities of Approximately 10 km/s, Fluid Dynamics, 2022, vol. 57, suppl. 2, pp. S594–S621.
18. Surzhikov S. T., Model of nonequilibrium emissivity of diatomic molecules averaged over the rotational structure, Physical-Chemical Kinetics in Gas Dynamics, 2023, vol. 24, issue 6. [in Russian]. http://chemphys.edu.ru/issues/2023-24-6/articles/1078/
19. Kusov A. L., Levashov V. Y., Gerasimov G. Y., et al., Direct Statistical Monte Carlo Simulation of Argon Radiation Behind the Front of a Strong Shock Wave, Fluid Dyn., 2023, vol. 58, pp. 759–772. https://doi.org/10.1134/S0015462823600918
20. Kozlov P. V., Zabelinskii I. E., Bykova N. G., et al., Radiation Characteristics of Shock-Heated Air in the Visible and Infrared Spectral Ranges, Fluid Dyn., 2023, vol. 58, pp. 960–967.
https://doi.org/10.1134/S0015462823601328
21. Smekhov G. D., Sergievskaya A. L., Pogosbekian M. Y., et al., Level Adiabatic Model for the Dissociation of Diatomic Molecules, Fluid Dyn., 2023, vol. 58, pp. 796–810.
https://doi.org/10.1134/S0015462823601079
22. Shnol E. E., Numerical experiments with moving molecules, In Book “Molecular Dynamics Method in Physical Chemistry”, M.: Nauka, 1996, pp. 109-127 [in Russian].