Гетерогенная рекомбинация оксида азота в задачах высокоскоростного обтекания тупых тел потоком диссоциированного воздуха: влияние на химический состав газа и теплообмен с поверхностью
Heterogeneous recombination of nitric oxide in problems of high-speed flow of dissociated air around blunt bodies: influence on the chemical composition of the gas and heat exchange with the surface
An important component of space flight safety is the effectiveness of thermal protection of the surface of reusable spacecraft, which is ensured by the use of modern materials with the lowest catalytic activity when interacting with the atmospheric gas mixture. Using the stage-by-stage heterogeneous kinetics of the interaction of a dissociated gas mixture with the surface of β-cristobalite, a numerical simulation of the flow of a supersonic multicomponent nonequilibri-um-dissociated air around a cylindrical model was performed within the framework of the Na-vier-Stokes equations taking into account chemical reactions in the flow for the conditions of heat exchange experiments on the VGU-4 induction RF plasmatron (IPMech RAS). A com-parative analysis of the calculations of the flow in a plasmatron with and without the formation of nitrogen oxide on the streamlined surface is carried out, and the need to take into account the heterogeneous recombination of nitrogen oxide in the boundary conditions is shown. The dependence of the flow characteristics in a wide range of adsorption site density is determined, simulating modes from non-catalytic to full catalytic. The contribution of diffusion and thermal conductivity processes to the heat flux to the surface is shown for various modes of gas in-teraction with the surface material.
dissociated air, nitrogen oxide, heterogeneous catalysis, heat exchange, HF plasmatron, β-cristobalite, density of adsorption sites
Важной составляющей безопасности космических полетов является эффективность теп-ловой защиты поверхности многоразовых космических аппаратов, которая обеспечива-ется применением современных материалов с наименьшей каталитической активностью при взаимодействии с атмосферной газовой смесью. С использованием постадийной ге-терогенной кинетики взаимодействия диссоциированной газовой смеси с поверхностью β-кристобалита выполнено численное моделирование обтекания цилиндрической моде-ли сверхзвуковым многокомпонентным неравновесно-диссоциированным воздухом в рамках уравнений Навье-Стокса с учетом химических реакций в потоке для условий экспериментов по теплообмену на индукционном ВЧ-плазмотроне ВГУ-4 (ИПМех РАН). Проведен сравнительный анализ расчетов течения в плазмотроне с учетом и без учета образования оксида азота на обтекаемой поверхности, показана необходимость учета гетерогенной рекомбинации оксида азота в граничных условиях. Определена за-висимость характеристик течения в широком диапазоне плотности адсорбционных цен-тров, моделирующих режимы от некаталитического до идеально каталитического. По-казан вклад процессов диффузии и теплопроводности в тепловой поток к поверхности для различных режимов взаимодействия газа с материалом поверхности.
диссоциированный воздух, оксид азота, гетерогенный катализ, теплообмен, ВЧ-плазмотрон, β-кристобалит, плотность адсорбционных центров
[1] A.N. Gordeev, A.F. Kolesnikov, High-Frequency Induction Plasmatrons of the VGU Se-ries, in: Topical Problems InMechanics. Physico-ChemicalMechanics of Liquids and Gases (in Russian), Nauka, Moscow, 2010: p. 151. [2] A. Chaplygin, A. Gordeev, A. Kolesnikov, V. Sakharov, S. Vasil’evskii, Experimental and numerical study of thermal effect of catalysis on the surfaces of metals and quartz in un-derexpanded jets of dissociated air, Physical-Chemical Kinetics in Gas Dynamics 19 (2018) 1–11. https://doi.org/10.33257/PhChGD.19.4.779. [3] E.P. Simonenko, N.P. Simonenko, A.F. Kolesnikov, A. V. Chaplygin, V.I. Sakharov, A.S. Lysenkov, I.A. Nagornov, N.T. Kuznetsov, Effect of 2 vol % Graphene Additive on Heat Transfer of Ceramic Material in Underexpanded Jets of Dissociated Air, Russian Journal of Inorganic Chemistry 67 (2022) 2050–2061. https://doi.org/10.1134/S0036023622601866. [4] A. V. Chaplygin, E.P. Simonenko, M.A. Kotov, V.I. Sakharov, I. V. Lukomskii, S.S. Gal-kin, A.F. Kolesnikov, A.S. Lysenkov, I.A. Nagornov, A.S. Mokrushin, N.P. Simonenko, N.T. Kuznetsov, M.Y. Yakimov, A.N. Shemyakin, N.G. Solovyov, Short-Term Oxidation of HfB2-SiC Based UHTC in Supersonic Flow of Carbon Dioxide Plasma, Plasma 7 (2024) 300–315. https://doi.org/10.3390/plasma7020017. [5] N.E. Afonina, V.G. Gromov, V.I. Sakharov, HIGHTEMP technique of high temperature gas flows numerical simulations, in: Proc. 5th Europ. Symp. on Aerothermodyn. Spase Vehicles., Cologne, 2004: pp. 323–328. [6] V.I. Sakharov, Numerical simulation of thermally and chemically nonequilibrium flows and heat transfer in underexpanded induction plasmatron jets, Fluid Dynamics 42 (2007) 1007–1016. https://doi.org/10.1134/S0015462807060166. [7] B.V. Romanovski, Basics of Catalysis, Binom, Moscow, 2015. [8] A.A. Kroupnov, M.Ju. Pogosbekian, V.I. Sakharov, Application of Heterogeneous Cataly-sis Models in Solving Problems of Jet Flow around Copper Models for Experimental Con-ditions on Induction HF Plasmatron, Physical-Chemical Kinetics in Gas Dynamics 24 (2023) 1–16. https://doi.org/10.33257/PhChGD.24.4.1060. [9] A.A. Kroupnov, M.J. Pogosbekian, The influence of heterogeneous catalytic processes on the heat flux to the surface and the chemical composition of the shock layer at high-speed flow around blunt bodies, Acta Astronaut 219 (2024) 517–531. https://doi.org/10.1016/j.actaastro.2024.03.044. [10] L. Shakurova, E. Kustova, State-specific boundary conditions for nonequilibrium gas flows in slip regime, Phys Rev E 105 (2022) 034126. https://doi.org/10.1103/PhysRevE.105.034126. [11] L. Shakurova, I. Armenise, E. Kustova, State-specific slip boundary conditions in non-equilibrium gas flows: Theoretical models and their assessment, Physics of Fluids 35 (2023). https://doi.org/10.1063/5.0161025. [12] A.N. Molchanova, A. V. Kashkovsky, Y.A. Bondar, Surface recombination in the direct simulation Monte Carlo method, Physics of Fluids 30 (2018). https://doi.org/10.1063/1.5048353. [13] A.S. Litvintsev, A.N. Molchanova, Y.A. Bondar, NO production on the reentry spacecraft thermal protection system surface in the direct simulation Monte Carlo method, J Phys Conf Ser 1404 (2019). https://doi.org/10.1088/1742-6596/1404/1/012118. [14] V.V. Lunev, Flow of real gases at high speeds (in Russian), Fizmatlit, Moscow, 2007. [15] J.D. Anderson, Hypersonic and High-Temperature Gas Dynamics – Second edition, Amer-ican Institute of Aeronautics and Astronautics, Reston, 2006. [16] A.A. Kroupnov, M.J. Pogosbekian, Interaction of dissociated air with the surface of β-cristobalite material, Acta Astronaut 203 (2023) 454–468. https://doi.org/10.1016/j.actaastro.2022.12.027. [17] I. Langmuir, THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM., J Am Chem Soc 40 (1918) 1361–1403. https://doi.org/10.1021/ja02242a004. [18] I. Chorkendorff, J.W. Niemantsverdriet, Concepts of Modern Catalysis and Kinetics, 3rd Edition, Third, WILEY-VCH VerlagGmbH&Co.KGaA, Boschstr. 12, 69469Weinheim, Germany, 2017. [19] S.A. Losev, V.N. Makarov, M.Ju. Pogosbekyan, O.P. Shatalov, V.S. Nikolsky, Thermo-chemical nonequilibrium kinetic models in strong shock waves on air, in: 6th Joint Ther-mophysics and Heat Transfer Conference, American Institute of Aeronautics and Astro-nautics, Reston, Virigina, 1994. https://doi.org/10.2514/6.1994-1990. [20] S.A. Losev, V.N. Makarov, M.Yu. Pogosbekyan, Model of the physico-chemical kinetics behind the front of a very intense shock wave in air, Fluid Dynamics 30 (1995) 299–309. https://doi.org/10.1007/BF02029844. [21] R.C. Reid, J.M. Prausnitz, T.K. Sherwood, The Properties of Gases and Liquids, McGraw-Hil, New York, 1977. [22] L. V. Gurvich, I. V. Veyts, C.B. Alcock, Thermodynamic Properties of Individual Sub-stances, Begell House Inc., 1994. https://doi.org/10.1615/0-8493-9926-2.0. [23] C. Park, J.T. Howe, R.L. Jaffe, G. V. Candler, Review of chemical-kinetic problems of fu-ture NASA missions. II - Mars entries, J Thermophys Heat Trans 8 (1994) 9–23. https://doi.org/10.2514/3.496. [24] A.F. Kolesnikov, V.I. Sakharov, Similarity between the heat transfer to a model in an un-derexpanded dissociated-air jet of a high-frequency plasmatron and to a sphere in a high-velocity flow in the terrestrial atmosphere, Fluid Dynamics 51 (2016) 400–405. https://doi.org/10.1134/S0015462816030121. [25] A.A. Kroupnov, M.J. Pogosbekian, Interaction of dissociated air with the surface of β-cristobalite material, Acta Astronaut 203 (2023) 454–468. https://doi.org/10.1016/j.actaastro.2022.12.027. [26] A.A. Kroupnov, M.Ju. Pogosbekian, V.I. Sakharov, New models of heterogeneous cataly-sis for numerical study of flows and heat transfer in an induction HF plasmatron, Fluid Dynamics (2024) (in press).