Generation of oxygen atoms during laser photoly-sis of O2 behind reflected shock waves and the ki-netics of their interaction with methane
The paper presents the first experimental results of measuring the time profiles of atomic oxygen concentration by atomic resonance absorption spectroscopy (ARAS, 130.5 nm) obtained using the developed experimental complex combining shock-wave heating and pulsed laser photolysis (LP, 193 nm) of gas mixtures. Using the example of photolysis of oxygen molecules and the reaction of O atoms with methane, the capabilities of the de-veloped setup for studying the kinetics of elementary reactions are demonstrated. The temperature dependence of the absorption cross section of oxygen and methane mole-cules for a wavelength of 130.5 nm is obtained. The efficiency of oxygen atom for-mation during LP of oxygen molecules is determined in the temperature range of 700–1900 K at laser pulse energies of 300–400 mJ. The rate constant of the reaction of oxy-gen atoms with methane at temperatures of 770–1900 K and pressures of 3–4 bar is ob-tained. Additionally, numerical modeling of experimental profiles was carried out using current kinetic schemes of hydrocarbon combustion.
Представлены первые экспериментальные результаты измерений временных про-филей концентрации атомарного кислорода методом атомно-резонансной абсорбционной спектроскопии (АРАС, 130.5 nm), полученные на созданном экспериментальном комплексе, сочетающем ударно-волновой нагрев и импульсный лазерный фотолиз (ЛФ, 193 nm) газовых смесей. На примере фотолиза молекул кислорода и реакции метана с атомами О показаны возможности созданной установки для исследования кинетики элементарных реакций. Получена температурная зависимость сечения поглощения молекул кислорода и метана для длины волны 130.5 nm. Определена эффективность образования атомов кислорода при ЛФ молекул кисло-рода в диапазоне температур 700–1900 K при энергиях лазерного импульса 300–400 мДж. Получена константа скорости реакции взаимодействия атомов кислорода с метаном при температурах 770–1600 К и давлениях 3–4 бар. Дополнительно, проведено численное моделирование экспериментальных профилей с использованием актуальных кинетических схем горения углеводородов.
1. Гейдон А., Герл И. Ударная труба в химической физике высоких температур. Изд. «МИР», Москва, 1966. С. 428. 2. Ступоченко ЕВ., Лосев С.А., Осипов А.И. Релаксационные процессы в ударных волнах, Физматгиз, Москва, 1965. C. 484. 3. Hanson R.K., Davidson D.F. Advances in shock tube techniques for fundamental studies of combustion kinetics // 25th ICDERS. Leeds. UK. 2015. 1 4. Chao X., Shen G., Sun K., Wang Z., Meng Q., Wang S., Hanson R. K. Cavity-enhanced ab-sorption spectroscopy for shock tubes: Design and optimization. Proc. Com. Ins. 2019. 37(2). P. 1345. https://doi.org/10.1016/j.proci.2018.06.230 5. Balan G. S., Raj S. A. A review on Shock tubes with multitudinous applications // International Journal of Impact Engineering 2023. V. 172. February. 104406. https://doi.org/10.1016/j.ijimpeng.2022.104406 6. Pavlov V., Gerasimov G., Levashov V., Kozlov P., Zabelinsky I., Bykova N. Shock Tube Study of Ignition Delay Times for Hydrogen–Oxygen Mixtures // Fire. 2023. 6. P. 435. https://doi.org/10.3390/fire6110435 7. Zhao Z., Wang Y., Zhang J., Liang J., Zhang Y., Zhao F., De Wang Q. A shock-tube experi-mental and kinetic simulation study on the autoignition of methane at ultra-lean and lean con-ditions // Heliyon. 2024. 10. e34204. https://doi.org/10.1016/j.heliyon.2024.e34204 8. Cano Ardila F. E., Nagaraju S., Tranter R. S., Garcia G. A., Desclaux A., Ccacya A. R., Chaumeix N., Comandini A. External standard calibration method for high-repetition-rate shock tube kinetic studies with synchrotron-based time-of-flight mass spectrometry // The Royal Society of Chemistry. Analyst. 2024. Feb 26. 149(5). P. 1586. https://doi.org/10.1039/d3an00819c 9. Figueroa-Labastida M., Zheng L., Ferris A. M., Obrecht N., Callu C., Hanson R. K. Shock-tube laminar flame speed measurements of ammonia/airgon mixtures at temperatures up to 771K // Combust. Flame. 2024. 260. 113256. 10. Campbell M.F., Parise T., Tulgestke A.M., Spearrin R.M., Davidson D.F., Hanson R.K., Strate-gies for obtaining long constant-pressure test times in shock tubes // Shock Waves. 2015. N.25. P. 651. 11. Ernst J., Wagner H.Gg., Zellner R. A combined flash photolysis/shock-tube study of the hy-droxyl radical with CH4 and CF3H around 1300 K // Ber Bunsenges Phys Chem. 1978. V.82. N.4,. P. 409 12. Michael J.V., Sutherland J.W., Klemm R.B. The flash photolysis-shock tube technique using atomic resonance absorption for kinetic studies at high temperatures // Int J Chem Kin 1985. V.17. P. 315. 13. Davidson D.F., Chang A., Hanson R.K. Laser photolysis shock tube for combustion kinetic studies // In: 22nd Sym (Int.) on Combust. Combust. Inst. 1989. P. 1877. 14. Michael J.V. and Lifshitz A. Atomic Resonance Absorption Spectroscopy with Flash or Laser Photolysis in Shock Wave Experiments. CHAPTER 16.3 Chemical and Combustion Kinetics. Handbook of Shock Waves. 2001. V. 3. P. 77 15. Koshi M., Yoshimura M., Matsui H. Photodissociation of O2 and CO2 from vibrationally excit-ed states at high temperatures // Chem. Phys. Lett. 1991. V. 176. №. 6. Р. 519. 16. Felder W., Fontijn A. High temperature photochemistry, a new technique for rate coefficient measurements over wide temperature ranges: initial measurements on the O + CH4 reaction from 525-1250 K // Chem. Phys. Lett. 1979. 67. 1. 53. 17. Y. Peng, Z. Jiang, J. Chen Mechanism and Kinetics of Methane Combustion, Part I: Thermal Rate Constants for Hydrogen-abstraction Reaction of CH4 + O(3P) // The Journal of Physical Chemistry 2017. 121(11). P. 2209-2220. doi: 10.1021/acs.jpca.6b12125. 18. Herron J. T. and Huie R. E. Rate Constants for the Reactions of Atomic Oxygen (O3P) With Organic Compounds in the Gas Phase // J. Phys. Chem. Ref. Data 1973. V. 2. N.3. 467. 19. Westenberg A. A. and N. de Haas Reinvestigation of the Rate Coefficients for O + H2 and O + CH4 // J. Chem. Phys. 1969. 50. 2512-2516. 20. Roth P. und Just Th. Atomabsorptionsmessungen zur Kinetik der Reaktion CH4 + O → CH3 + OH im Temperaturbereich 1500 ≤ T ≤ 2250 K // Ber. Bunsenger Physik. Chem. 1977. 81. 6. 572. 21. Brabbs T. A. and Brokaw R. S. Shock tube measurements of specific reaction rates in the branched chain CH4-CO-O2 system // Fifteenth Symposium (International) on. Combustion (The Combustion Institute. Pittsburgh. 1974. 893. 22. Klemm R. B., Tanzawa T., Skolnik E. G., Michael J. V. A resonance fluorescence kinetic study of the O(3P) +CH4 reaction over temperature range 474 K to 1156 K // Eighteenth Symposium (International) on Combustion 1981. 785-799. 23. Dean A. M., Kistiakowsky G. B. Oxidation of Carbon Monoxide/Methane Mixtures in Shock Waves // J. Chem. Phys. 1971. 54. 1718. 24. Cadle R.D. and Alien E.R. Kinetics of the Reaction of O(3P) with Methane in Oxygen, Nitro-gen, and Argon-Oxygen Mixtures // J. Phys. Chem. 1965. 69. 1611. 25. Brown J.M. and Thrush B.A. E.s.r. studies of the reactions of atomic oxygen and hydrogen with simple hydrocarbons // Trans. Faraday Soc. 1967. 63. 630-642. 26. Wong E. L. Potter A. E., Jr. Mass·Spectrometric Investigation of Reaction of Oxygen Atoms with Methane // Can. J. Chern. 1967. 45. 367. 27. Roth P., Th. Just Atom-Absorptionsmessungen beim thermischen Zerfall von Methan hinter StoBwellen. Ber. Bunsenges. physik. Chem. Bd. 1975. 79. S. 682/8 28. Roth P. ARAS-Messungen an einigen Hochtemperatur-Kohlenwasserstoff-Reaktionen. // Forsch. Ingenieurwes. 1980. V. 46. N. 3. P.93-102. 29. Ohmori K., Yoshimura M., Koshi M., Matsui H. A flash photolysis study of CH4-O2 mixtures behind shock waves: examination of reaction of CH3 + O2 // Bull. Chem. Soc. Jpn. 1992. V. 65. P. 1317. 30. Быстров Н.С., Емельянов А.В., Еремин А.В., Курбатова Е.С., Яценко П.И. Совместное воздействие ударно-волнового нагрева и лазерного фотолиза для генерации активных атомов и радикалов в широком диапазоне температур // ТВТ. 2024 г. в печати. 31. Быстров Н. С., Емельянов А. В., Еремин А. В., Яценко П. И. Экспериментальное иссле-дование реакции н-бутанола с кислородом за ударными волнами АРАС мето-дом//Физико-химическая кинетика в газовой динамике. 2019. Т.20, вып. 1. http://chemphys.edu.ru/issues/2019-20-1/articles/799/ 32. Ahmed S.M., Kanik I., Link R. Temperature-dependent photoabsorption cross section meas-urements of O2 at the OI - 1304 A triplet emission lines // Chem. Phys. Lett. 1996, V. 259, P. 545. 33. Chen F. Z. and Wu C.Y.R. Temperature-dependent photoabsorption cross sections in the VUV-UV region. I. Methane and ethane // J. Quant. Spectrosc. Radiat. Transfer 2004, 85, P. 195-209. 34. Bystrov N.S., Emelianov A.V., Eremin A.V., Yatsenko P.I. New insight into dissociation of molecular oxygen at temperatures below 5000 K // Combust flame. 2023. V. 258. № 2(12). 113096 35. Millikan R.C., White D.R. Systematics of Vibrational Relaxation // J. Chem. Phys. 1963. V. 39. N. 12. 3209. 36. Andrienko D.A., Boyd I.D. Vibrational Relaxation and Dissociation of Oxygen in Molecule-Atom Collisions // AIAA AVIATION Forum 22-26 June 2015, Dallas, TX 45th AIAA Ther-mophysics Conference. P. 1-19. DOI: 10.2514/6.2015-3251 37. Sutherland J. W., Michael J. V., Klemm R. B. Rate Constant for the O(3P) + CH4 → OH + CH3 Reaction Obtained by the Flash Photolysis-shock Tube Technique over the Temperature Range 763 ≤ T ≤ 1755 K // J. Phys. Chem. 1986, 90, 5941 38. Klemm R.B., Tanzawa T., Skolnik E.G., Michael J.V. A resonance fluorescence kinetic studyof the O (3P) +CH4 reaction over the temperature range 474 K to 1156 K // The Combus-tion Institute 1981. V. 31. P. 785 39. Felder W.. Madronich S. High Temperature Photochemistry (HTP): Kinetics and Mechanism Stdies of Elementary Combustio Reactions over 300-1700 K Combustion Science and Tech-nology, 50:1-3, 135-150, DOI:10.1080/00102208608923929 40. G.P. Smith, Y. Tao, and H. Wang, Foundational Fuel Chemistry Model Version 1.0 (FFCM-1), http://nanoenergy.stanford.edu/ffcm1, 2016. 41. Ranzi, E., Cavallotti, C., Cuoci, A., Frassoldati, A., Pelucchi, M., Faravelli, T., New reaction classes in the kinetic modeling of low temperature oxidation of n-alkanes // Combustion and Flame, 2015, 162 (5), pp. 1679-1691, DOI: 10.1016/j.combustflame.2014.11.030 42. Li G., Lu Y., Glarborg P. Oxidation Kinetics of Methane and Methane/Methanol Mixtures in Supercritical Water // Ind. Eng. Chem. Res. 2022. Vol. 61, № 11. P. 3889–3899. 43. Smith GP, Golden DM, Frenklach M, Moriarty NW, Eiteneer B, Goldenberg M, Bowman CT, Hanson RK, Song S, Gardiner Jr WC, Lissianski VV, Qin Z. GRI-Mech 3.0. 1999. 44. Ruscic B, Pinzon RE, vonLaszewski G, Kodeboyina D, Burcat A, Leahy D, Montoya D, Wag-ner AF. Active Thermochemical Tables: Thermochemistry for the 21st Century. J Phys Conf Ser. 2005;16:561-70. 45. Goos E, Burcat A, Ruscic B. New NASA Thermodynamic Polynomials Database With Active Thermochemical Tables updates. Report ANL 05/20 TAE 960; Extended Third Millennium Thermodynamic Database of New NASA Polynomials with Active Thermochemical Tables update, Available from: http://garfield.chem.elte.hu/Burcat/NEWNASA.TXT 46. Hashemi, H.; Christensen, J. M.; Gersen, S.; Levinsky, H.; Klippenstein, S. J.; Glarborg, P. High-pressure oxidation of methane. Combust. Flame 2016, 172, 349-364 47. Li, G.; Lu, Y.; Hashemi, H.; Glarborg, P. Kinetic model for high-pressure methanol oxidation in gas phase and supercritical water. Energy Fuels 2022, 36, 575-588