Effect of Dissolved Substances on the Size of Water Droplets in Levitating Droplet Clusters
A laboratory technique has been developed to study the effect of dissolved substances on the condensational growth of spherical droplets of water in a self-arranged droplet cluster levitating above a locally heated water surface, as well as on the equilibrium droplet size obtained by infrared heating of the cluster. Inorganic salts such as potassium and sodium chlorides were shown to significantly influence the condensation/evaporation process of water droplets even at low solute concentrations. In contrast, the influence of typical substances used in plant treatments is negligible. The new experimental results can be used in modeling various technological processes involving aqueous aerosols. These results might also be useful in studies of moisture transfer and precipitation formation in the atmosphere.
water droplets, droplet cluster, aqueous solutions, evaporation
Разработана лабораторная методика изучения влияния растворенных веществ на конденсационный рост сферических капель воды в упорядоченном капельном кластере, левитирующем над локально нагретой поверхностью воды, а также на равновесный размер капель, получаемых при инфракрасном нагреве кластера. Было показано, что неорганические соли, такие как хлориды калия и натрия, значительно влияют на процесс конденсации/испарения капель воды даже при низких концентрациях соли. В отличие от них, влияние ряда веществ, используемых при обработке растений, незначительно. Новые экспериментальные результаты могут быть использованы при моделировании различных технологических процессов с участием водных аэрозолей. Эти результаты также могут быть полезны при изучении переноса влаги и образования осадков в атмосфере.
капли воды, капельный кластер, водные растворы, испарение
1. Ziaee A., Albadarin A. B., Padrela L., Femmer T., O’Reilly E., Walker G. Spray drying of pharmaceuticals and biopharmaceuticals: Critical parameters and experimental process optimization approaches // Eur. J. Pharm. Sci. 2019. Vol. 127, pp. 300–318. https://doi.org/10.1016/j.ejps.2018.10.026 2. O’Sullivan, J. J., Norwood, E. A., O’Mahony, J. A., Kelly A. L. Atomisation technologies used in spray drying in the dairy industry: A review // J. Food Eng. 2019. Vol. 243, pp. 57−69. https://doi.org/10.1016/j.jfoodeng.2018.08.027 3. Baumann J. M., Adam M. S., Wood J. D. Engineering advances in spray drying for pharmaceuticals // Annu. Rev. Chem. Biomol. Eng. 2021. Vol. 12, pp. 217–240. https://doi.org/10.1146/annurev-chembioeng-091720-034106 4. Hardy D. A., Archer J., Lemaitre P., Vehring R., Reid J. P., Walker J. S. High time resolution measurements of droplet evaporation kinetics and particle crystallization // Phys. Chem. Chem. Phys. 2021. Vol. 23, No. 34, pp. 18568–18579. https://doi.org/10.1039/D1CP02840E 5. Hardy D. A., Robinson J. F., Hildich T.G., Neal E., Lemaitre P., Walker J.S., Reid J. P. Accurate measurements and simulations of the evaporation and trajectories of individual solution droplets // J. Phys. Chem. B 2023. Vol. 127, No. 15, pp. 3416–3430. https://doi.org/10.1021/acs.jpcb.2c08909 6. Li H., Cryer S., Raymond J., Acharya L. Interpreting atomization of agricultural spray image patterns using latent Dirichlet allocation techniques // Artif. Intell. Agricult. 2020. Vol. 4, pp. 253–261. https://doi.org/10.1016/j.aiia.2020.10.004 7. O.A. Spaska, M. Daszykowski, Bushuev Yu. G., Evaluation of evaporation fluxes for pesticides and low volatile hazardous materials based on evaporation kinetics of net liquids // ACS Omega 2024. Vol. 9, pp. 18617−18623. http://pubs.acs.org/journal/acsodf 8. Lankinen Å., Witzell J., Aleklett K., Furenhed S., Green K. K., Latz M., Liljeroth E., Larsson R., Löfkvist K., Meijer J., Menkis A., Ninkovic V., Olson Å., Grenville-Briggs L. Challenges and opportunities for increasing the use of low-risk plant protection products in sustainable production. A review // Agron. Sustain. Dev. 2024. Vol. 44, 21. https://doi.org/10.1007/s13593-024-00957-5 9. Dombrovsky L. A., Fedorets A. A., Levashov V. Yu., Kryukov A. P., Bormashenko E., Nosonovsky M. Modeling evaporation of water droplets as applied to survival of airborne viruses // Atmosphere 2020. Vol. 11, No. 9, 965. https://doi.org/10.3390/atmos11090965 10. Hasan S., Sobolev K., Nosonovsky M. Evaporation of droplets capable of bearing viruses airborne and on hydrophobic surfaces // J. Appl. Phys. 2021. Vol. 129, 024703. https://doi.org/10.1063/5.0023501 11. Kaufman Y. J., Koren I., Remer L. A., Rosenfeld D., Rudich Y. The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean // PNAS 2005. Vol. 102, No. 32, pp. 11207–11212. https://doi.org/10.1073/pnas.0505191102 12. Nguyen T. B., Lee P. B., Updyke K. M., Bones D. L., Laskin J., Laskim A., Nizkorodov S.A. Formation of nitrogen- and sulfur-containing light-absorbing compounds accelerated by evaporation of water from secondary organic aerosols // J. Geophys. Res.: Atmospheres 2012. V. 117, No. D1, D01207. https://doi.org/10.1029/2011JD016944 13. Karset I. H. H., Gettelman A., Storelvmo T., Alterskjær K., Berntsen T. K. Exploring impacts of size-dependent evaporation and entrainment in a global model // J. Geophys. Res.: Atmospheres 2020. Vol. 125, No. 4, e2019JD031817. https://doi.org/10.1029/2019JD031817 14. Leung G. R., Saleeby S. M., Sokolowsky G. A., Freeman S.W., van den Heever S. C. Aerosol–cloud impacts on aerosol detrainment and rainout in shallow maritime tropical clouds // Atm. Chem. Phys. 2023. Vol. 23, pp. 5263–5278. https://doi.org/10.5194/acp-23-5263-2023 15. Fedorets A. A., Dombrovsky L. A., Bormashenko E., Nosonovsky, M. Levitating Droplet Clusters. New York: Begell House, 2023. 196 pp. https://doi.org/10.1615/978-1-56700-532-5.0 16. Fedorets A. A., Dombrovsky L. A. Levitating droplet clusters: from the discovery to potential applications // Academia Engineering 2023. Vol. 1, No. 1, 6093. https://doi.org/10.20935/AcadEng6093 17. Combe N. A., Donaldson D. J. Water evaporation from acoustically levitated aqueous solution droplets // J. Phys. Chem. A 2017. Vol. 121, No. 38, pp. 7197–7204. https://doi.org/10.1021/acs.jpca.7b08050 18. Yarin A. L., Brenn G., Kastner O., Rensink D., Tropea C. Evaporation of acoustically levitated droplets // J. Fluid Mech. 1999. Vol. 399, pp. 151–204. https://doi.org/10.1017/S0022112099006266 19. Maruyama Y., Hasegawa K. Evaporation and drying kinetics of water-NaCl droplets via acoustic levitation // RSC Adv. 2020. Vol. 10, pp. 1870–1877. https://doi.org/10.1039/C9RA09395H 20. Yang Z., Yang S., He Y., Shi Z., Dong T. Evaporation issues of acoustically levitated fuel droplets // Ultrasonics Sonochem. 2023. Vol. 98, 106480. https://doi.org/10.1016/j.ultsonch.2023.106480 21. Zeng H., Wakata Y., Chao X., Lia M., Sun C. On evaporation dynamics of an acoustically levitated multicomponent droplet: Evaporation-triggered phase transition and freezing // J. Coll. Interface Sci. 2023. Vol. 648, pp.736–744. https://doi.org/10.1016/j.jcis.2023.06.012 22. Fedorets A. A., Shcherbakov D. V., Levashov V. Yu., Dombrovsky L. A. Self-stabilization of droplet clusters levitating over heated salt water // Int. J. Therm. Sci. 2022. Vol. 182, 107822. https://doi.org/10.1016/j.ijthermalsci.2022.107822 23. Fedorets A. A., Medvedev D. N., Levashov V. Yu., Dombrovsky L. A. Stabilization of levitating clusters containing saltwater droplets // Int. J. Therm. Sci. 2023. Vol. 188, 108222. https://doi.org/10.1016/j.ijthermalsci.2023.108222 24. Fedorets A. A., Shcherbakov D. V., Dombrovsky L. A., Bormashenko E., Nosonovsky M. Impact of surfactants on the formation and properties of droplet clusters // Langmuir 2020. Vol. 36, No. 37, pp. 11154–11160. https://doi.org/10.1021/acs.langmuir.0c02241 25. Fedorets A. A., Kolmakov E. E., Dombrovsky L. A. Experimental study of the effect of water salinity on the parameters of an equilibrium droplet cluster levitating over a water layer // Front. Heat Mass Transf. 2024. Vol. 22, No. 1, pp. 1–14. https://doi.org/10.32604/fhmt.2024.049335 26. Fedorets A. A., Dombrovsky L. A., Generation of levitating droplet clusters above the locally heated water surface: A thermal analysis of modified installation // Int. J. Heat Mass Transf. 2017. Vol. 104, pp. 1268–1274. https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.087 27. Dombrovsky L. A., Fedorets A. A., Medvedev D. N. The use of infrared irradiation to stabilize levitating clusters of water droplets // Infrared Phys. Techn. 2016. Vol. 75, pp. 124–132. https://doi.org/10.1016/j.infrared.2015.12.020 28. Hale G. M., Querry M. R. Optical constants of water in the 200 nm to 200 µm wavelength region // Appl. Optics 1973. Vol. 12, No. 3, pp. 555–563. https://doi.org/10.1364/AO.12.000555 29. Золотарев В. М., Демин А. В. Оптические постоянные воды в широком диапазоне волн 0.1 Å÷1 м // Оптика и спектроскопия. 1977. Т. 43, № 2, С. 271–279. 30. Van de Hulst H.C. Light Scattering by Small Particles. New York: Dover Publ., 1981. 496 pp. 31. Bohren C. F., Huffman D. R., Absorption and Scattering of Light by Small Particles. New York, Wiley, 1998. 530 pp. 32. Hergert W., Wriedt T. The Mie Theory: Basics and Applications. Berlin: Springer, 2012. 273 pp. 33. Mishchenko M. I. Electromagnetic Scattering by Particles and Particle Groups: An Introduction. Cambridge (UK): Cambridge University Press, 2014. 450 pp. 34. Mishchenko M. I. “Independent” and “dependent” scattering by particles in a multi-particle group // OSA Continuum 2018. Vol. 1, No. 1, pp. 243–260. https://doi.org/10.1364/OSAC.1.000243 35. Dombrovsky L. A., Fedorets A. A., Levashov V. Yu., Kryukov A. P., Bormashenko E., Nosonovsky M. Stable cluster of identical water droplets formed under the infrared irradiation: Experimental study and theoretical modeling // Int. J. Heat Mass Transf. 2020. Vol. 161, 120255. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120255 36. Fell C. J. D., Hutchison Y. P. Diffusion coefficients for sodium and potassium chlorides in water at elevated temperatures // J. Chem. Eng. Data 1971. Vol. 16, No. 4, pp. 427–429. https://doi.org/10.1021/je60051a005 37. Hamann C. H., Hamnett A., Vielstich W. Electrochemistry. Second Edition. Weinheim (Germany): Wiley-VCH, 2007. 550 pp. 38. Левашов В. Ю., Крюков А. П. Численное моделирование испарения капель воды в парогазовую среду // Коллоидный журнал. 2017. Т. 79, № 5, С. 606–612. 39. Levashov V. Y., Kryukov A. P., Shishkova I. N. Influence of the noncondensable component on the characteristics of temperature change and the intensity of water droplet evaporation // Int. J. Heat Mass Transf. 2018. Vol. 127, pp. 115–122. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.069