Liquid Jet Injection from a Flat Plate into a Transverse Supersonic Gas Flow
Numerical simulation of the interaction of a liquid jet injected normally to the surface of a flat plate with a supersonic air flow is considered. The calculations are performed in an unsteady three-dimensional formulation with a hybrid approach that involves the use of the Reynolds-averaged Navier–Stokes equations and the large-eddy simulation to turbulence modeling. Switching between the approaches depends on the level of viscous stresses (non-zone hybrid approach). The interaction of the gas with the liquid is calculated using a multiphase model of the volume of fluid that takes into account surface tension forces. The loss of stability of the liquid jet, the fragmentation of the jet into droplets, and the dynamics of droplets in a transverse supersonic flow are modelled. The results of calculations of the parameters characterizing the penetration of the liquid jet into the region of the supersonic air flow are presented, and the influence of various factors on the geometry of the liquid spray cone is discussed. The obtained results are compared with the computational results available in the literature and with the data obtained with semi-empirical dependencies for the depth of jet penetration into the air flow, its width and the position of the bow shock wave. The calculation results are in qualitative and quantitative agreement with the data given in the literature. The results of numerical simulation are of interest for obtaining droplets with specified properties and sizes for use in additive technologies, as well as for various technical applications, for example, for controlling the thrust of a rocket nozzle.
Рассматривается численное моделирование взаимодействия струи жидкости, инжектируемой по нормали к поверхности плоской пластины, со сверхзвуковым потоком воздуха. Расчеты проводятся в нестационарной трехмерной постановке с использованием гибридного подхода, который предполагает использование осредненных по Рейнольдсу уравнений Навье–Стокса и вихреразрешающего подхода к моделированию турбулентности. Переключение между подходами зависит от уровня вязких напряжений (незонный гибридный подход). Расчет взаимодействия газовой среды с жидкостью осуществляется с помощью многофазной модели объема жидкости, учитывающей силы поверхностного натяжения. Моделируется потеря устойчивости струи жидкости, дробление струи на капли и динамика капель в сносящем сверхзвуковом потоке. Приводятся результаты расчетов параметров, характеризующих проникновение струи жидкости в область сверхзвукового потока воздуха, а также обсуждается влияние газодинамических факторов на геометрию факела распыла жидкости. Полученные результаты сравниваются с результатами расчетов, имеющимися в литературе, и с данными, полученными на основе полуэмпирических зависимостей для глубины проникновения струи в газовый поток, ее ширины и положения головной ударной волны. Результаты расчетов в качественном и количественном отношении согласуются в данными, приведенными в литературе. Результаты численного моделирования представляют интерес для получения капель с заданными свойствами и размерами для использования в аддитивных технологиях, а также для различных технических приложений, например, для управления тягой реактивного сопла.
1. Emelyanov V.N., Volkov K.N., Yakovchuk M.S. Multiparameter optimization of thrust vector control with transverse injection of a supersonic underexpanded gas jet into a convergent-divergent nozzle // Energies. 2021. Vol. 14. No. 14. 4359. 2. Smirnov N.N., Betelin V.B., Kushnirenko A.G., Nikitin V.F., Dushin V.R., Nerchenko V.A. Ignition of fuel sprays by shock wave mathematical modeling and numerical simulation // Acta Astronautica. 2013. Vol. 87. P. 14–29. 3. Smirnov N.N., Nikitin V.F., Dushin V.R., Filippov Y.G., Nerchenko V.A., Khadem J. Combustion onset in non-uniform dispersed mixtures // Acta Astronautica. 2015. Vol. 115. P. 94–101. 4. Huang W. Transverse jet in supersonic crossflows // Aerospace Science and Technology. 2016. Vol. 50. P. 183–195. 5. Mahesh K. The interaction of jets with crossflow // Annual Review of Fluid Mechanics. 2013. Vol. 45. P. 379–407. 6. Ren Z., Wang B., Xiang G., Zhao D., Zheng L. Supersonic spray combustion subject to scramjets: progress and challenges // Progress in Aerospace Sciences. 2019. Vol. 105. P. 40–59. 7. Gelfand B.E. Droplet breakup phenomena in flows with velocity lag // Progress in Energy and Combustion Science. 1996. Vol. 22. No. 3. P. 201–265. 8. Lasheras J.C., Hopfinger E.J. Liquid jet instability and atomization in a coaxial gas stream // Annual Review of Fluid Mechanics. 2000. Vol. 32. P. 275–308. 9. Бойко В.М., Нестеров А.Ю., Поплавский С.В. Диспергирование жидкости в высокоскоростных коаксиальных газовых струях // Теплофизика и аэромеханика. 2019. Т. 26. № 3. С. 417–433. 10. Piltch M., Erdman C.A. Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of liquid drop // International Journal of Multiphase Flow. 1987. Vol. 13. No. 6. P. 741–757. 11. Theofanous T.G., Mitkin V.V., Ng C.L., Chang C.H., Deng X., Sushchikh S. The physics of aerobreakup. II. Viscous liquids // Physics of Fluids. 2012. Vol. 24. 022104. 12. Mitkin V.V., Theofanous T.G. The physics of aerobreakup. IV. Strain-thickening liquids // Physics of Fluids. 2017. Vol. 29. 122101. 13. Patil S., Sahu S. Liquid jet core characterization in a model crossflow air blast atomizer // International Journal of Multiphase Flow. 2021. Vol. 141. 103688. 14. Menon S., Jones H., Leung J., Zhao W. Characterization of spray structures formed during water injection into a free supersonic air jet // AIAA Paper. 2019. No. 2019-4243. 15. Xiao F., Wang Z.G., Sun M.B., Liang J.H., Liu N. Large eddy simulation of liquid jet primary breakup in supersonic air crossflow // International Journal of Multiphase Flow. 2016. Vol. 87. P. 229–240. 16. Medipati C., Deivandren S., Govardhan R.N. Liquid jet injection in supersonic crossflow: Self-induced jet oscillations and its effects // International Journal of Multiphase Flow. 2023. Vol. 158. 104265. 17. Clemens N.T., Narayanaswamy V. Low-frequency unsteadiness of shock wave/ turbulent boundary layer interactions // Annual Review of Fluid Mechanics. 2014. Vol. 46. P. 469–492. 18. Lin K.C., Kennedy P.J., Jackson T.A. Structures of water jets in a Mach 1.94 supersonic crossflow // AIAA Paper. 2004. No. 2004–971. 19. Liu H., Guo Y., Lin W. Numerical simulations of spray jet in supersonic crossflows using an Eulerian approach with an SMD model // International Journal of Multiphase Flow. 2016. Vol. 82. P. 49–64. 20. Li P., Wang Z., Sun M., Wang H. Numerical simulation of the gas-liquid interaction of a liquid jet in supersonic crossflow // Acta Astronautica. 2017. Vol. 134. P. 333–344. 21. Wang Z.G., Wu L., Li Q., Li C., Experimental investigation on structures and velocity of liquid jets in a supersonic crossflow // Applied Physics Letters. 2014. Vol. 105. 134102. 22. Wu L., Wang Z.G., Li Q., Zhang J. Investigations on the droplet distributions in the atomization of kerosene jets in supersonic crossflows // Applied Physics Letters. 2015. Vol. 107. 104103. 23. Clark C.R., Tonarely M.E., Morales A.J., Reyes J., Ahmed K. Flow-independent liquid jet-in-crossflow injection using physical obstructions // ASME Journal of Energy Resources Technology. 2022. Vol. 144. No. 10. 102106. 24. Sapmaz H., Alkan B., Lin C.X., Ghenai C. Visualization of pulsed aerated liquid jet in supersonic cross flow // Proceedings of ASME Fluids Engineering Division Summer Meeting, 19–23 June 2005, Houston, Texas, USA. ASME, 2005. Vol. 1. P. 847–853. 25. Liu N., Wang Z., Sun M., Deiterding R., Wang H. Simulation of liquid jet primary breakup in a supersonic crossflow under adaptive mesh refinement framework // Aerospace Science and Technology. 2019. Vol. 91. P. 456–473. 26. Волков К.Н., Емельянов В.Н., Яковчук М.С. Нестационарный поперечный вдув струи газа в сверхзвуковой сопловой поток // Теплофизика высоких температур. 2020. Т. 58. № 2. С. 256–265. 27. Hu R., Li Q., Li C., Li C. Effects of an accompanied gas jet on transverse liquid injection in a supersonic crossflow // Acta Astronautica. 2019. Vol. 159. P. 440–451. 28. Im K.-S., Lin K.C., Lai M.-C. Spray atomization of liquid jet in supersonic cross flows // AIAA Paper. 2005. No. 2005-732. 29. Yang S., Le J. Numerical simulation of liquid fuel atomization in supersonic crossflow // Journal of Propulsion Technology. 2008. Vol. 29. P. 519–522. 30. Fan X., Wang J., Zhao F., Li J., Yang T. Eulerian–Lagrangian method for liquid jet atomization in supersonic crossflow using statistical injection model // Advances in Mechanical Engineering. 2018. Vol. 10. No. 2. P. 1–13. 31. Im K.S., Lin K.C., Lai M.C. Breakup modeling of a liquid jet in cross flow // International Journal of Automotive Technology. 2011. Vol. 12. P. 489–496. 32. Perurena J.B., Asma C.O., Theunissen R., Chazot O. Experimental investigation of liquid jet injection into Mach 6 hypersonic crossflow // Experiments in Fluids. 2009. Vol. 46. No. 3. P. 403–417. 33. Varga C.M., Lasheras J.C., Hopfinger E.J. Initial breakup of a small-diameter liquid jet by a high-speed gas stream // Journal of Fluid Mechanics. 2003. Vol. 479. P. 405–434. 34. Ghahremani A.R., Saidi M.H., Hajinezhad A., Mozafari A.A. Experimental investigation of spray characteristics of a modified bio-diesel in a direct injection combustion chamber // Experimental Thermal and Fluid Science. 2017. Vol. 81. P. 445–453. 35. Madabhushi R.K., Leong M.Y., Arienti M., Brown C.T., McDonell V.G. On the breakup regime map of liquid jet in crossflow // Proceedings of the 19th Annual Conference on Liquid Atomization and Spray Systems, 24 May 2006, Toronto, Canada. Institute for Liquid Atomization and Spray Systems, 2006. P. 23–26. 36. Frohlich J., von Terzi D. Hybrid LES/RANS methods for the simulation of turbulent flows // Progress in Aerospace Sciences. 2008. Vol. 44. P. 349–377. 37. Menter F.R., Kuntz M.. Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles // Lecture Notes in Applied and Computational Mechanics. 2004. P. 339–352. 38. Menter F. Stress-blended eddy simulation (SBES) – a new paradigm in hybrid RANS–LES modeling // Notes on Numerical Fluid Mechanics and Multidisciplinary Design. 2018. Vol. 137. P. 27–37. 39. Chode K.K., Viswanathan H., Chow K. Numerical investigation on the salient features of flow over standard notchback configurations using Scale Resolving Simulations // Computers and Fluids. 2020. Vol. 210. 104666. 40. Batten P., Goldberg U., Chakravarthy S. LNS – an approach towards embedded LES // AIAA Paper. 2002. No. 2002-0427. 41. Walters D.K., Bhushan S., Alam M.F., Thompson D. Investigation of a dynamic hybrid RANS/LES modelling methodology for finite volume CFD simulations // Flow, Turbulence and Combustion. 2013. Vol. 91. No. 3. P. 643–667. 42. Kim B.-C., Chang K. Assessment of hybrid RANS/LES models in heat and fluid flows around staggered pin-fin arrays // Energies. 2020. Vol. 13. 3752. 43. Emelyanov V.N., Volkov K.N., Yakovchuk M.S. Outflow of a supersonic overexpanded air jet into a water // European Journal of Mechanics B/Fluids. 2024. Vol. 105. P. 1–13. 44. Volkov K. Numerical analysis of Navier–Stokes equations on unstructured meshes // Handbook on Navier–Stokes Equations: Theory and Analysis. Nova Science, 2016. P. 365–442. 45. Volkov K. Multigrid and preconditioning techniques in CFD applications // CFD Techniques and Thermo-Mechanics Applications. Springer International Publishing, 2018. P. 83–149. 46. Daunenhofer J.F., Baron J.R. Grid adaption for the 2D Euler equations // AIAA Paper. 1985. No. 85-0484. 47. Norman A., Viti V., MacLean K., Chitta V. Improved CFD methodology for compressible and hypersonic flows using a Hessian-based adaption criteria // AIAA Paper. 2022. No. 2022-0582. 48. Shrivastava S., Verma I., Yadav R., Nakod P. Solution-based mesh adaption criteria development for accelerating flame tracking simulations // ASME Paper. 2022. No. GT2022-82620. 49. Волков К.Н., Емельянов В.Н., Тетерина И.В., Яковчук М.С. Методы и концепции визуализации вихревых течений в задачах вычислительной газовой динамики // Вычислительные методы и программирование. 2016. Т. 17. № 1. С. 81–100. 50. Волков К.Н., Емельянов В.Н., Яковчук М.С. Структура течения и изменение тяги при вдуве струи газа в сверхзвуковую часть сопла // Журнал технической физики. 2019. Т. 89. № 3. С. 353–359. 51. Schetz J.A., Kush E.A., Joshi P.B. Wave phenomena in liquid jet breakup in a supersonic crossflow // AIAA Journal. 1980. Vol. 18. P. 774–778. 52. Sallam K., Aalburg C., Faeth G.M. Breakup of round nonturbulent liquid jets in gaseous crossflow // AIAA Journal. 2004. Vol. 42. P. 2529–2540. 53. Arienti M., Soteriou M.C. Time-resolved proper orthogonal decomposition of liquid jet dynamics // Physics of Fluids. 2009. Vol. 21. No. 11. 1979–1178. 54. Li X., Soteriou M.C. Detailed numerical simulation of liquid jet atomization in crossflow of increasing density // International Journal of Multiphase Flow. 2018. Vol. 104. P. 214–232. 55. Волков К.Н., Емельянов В.Н., Яковчук М.С. Конкуренция механизмов неустойчивости сверхзвуковой перерасширенной струи воздуха при ее истечении в воду // Письма в журнал технической физики. 2023. Т. 49. № 21. С. 29–32. 56. Yates C. Liquid injection into supersonic airstreams // AIAA Paper. 1971. No. 1971-724. 57. Wu P.K., Kirkendall K.A., Fuller R.P., Gruber M.R., Nejad A.S. Spray trajectories of liquid fuel jets in subsonic crossflows // International Journal of Fluid Mechanics Research. 1997. Vol. 24. No. 1–3. P. 128–137. 58. Ghenai C., Sapmaz H., Lin C.X. Penetration height correlations for non-aerated and aerated transverse liquid jets in supersonic cross flow // Experiments in Fluids. 2009. Vol. 46. P. 121–129. 59. Sathiyamoorthy K., Danish T.H., Iyengar V.S., Srinivas J., Harikrishna X., Muruganandam T.M., Chakravarthy S.R. Penetration and combustion studies of tandem liquid jets in supersonic crossflow // Journal of Propulsion and Power. 2020. Vol. 36. P. 920–930.