Движение трехфазных газовых пузырьков под влиянием своего электрического поля



The movement of three-phase gas bubbles under the influence of their electric field

The results of an experimental study of the flow of a hydrophobic liquid between non-concentric cylinders are presented. It is shown that with a small gap between the cylinders and their counter rotation, in the area of flow expansion, gas cavitation of dissolved gas and steam of a small impurity of water can be observed. After suspending the flow, water vapor condenses with the formation of three-phase cavitation bubbles and microdrops of water at the gas-liquid interface. It was found that when surfaced, three-phase bubbles have their own magnetic field. The leading role of such bubbles on the behavior of smaller gas bubbles is shown. Based on the analysis of the interaction of bubbles, the magnetic field of a three-phase bubble is reconstructed.

vapor-gas cavitation, hydrophobic liquid, three-phase bubble, double electric layer, magnetic field.


Том 25, выпуск 4, 2024 год



Представлены результаты экспериментального исследования течения гидрофобной жидкости между неконцентрическими цилиндрами. Показано, что при малом зазоре между цилиндрами и встречном их вращении, в области расширения потока, может наблюдаться газовая кавитация растворенного газа и паровая небольшой примеси воды. При остановки движения потока, водяной пар конденсируется с формированием трехфазных кавитационных пузырьков и микрокаплями воды на границе раздела газ-жидкость. Обнаружено, что при всплытии трехфазные пузырьки обладают собственным магнитным полем. Показана лидирующая роль таких пузырьков на поведение более мелких газовых пузырьков. По анализу взаимодействия пузырьков сделана реконструкция магнитного поля трехфазного пузырька.

паро-газовая кавитация, гидрофобная жидкость, трехфазный пузырек, двойной электрический слой, магнитное поле.


Том 25, выпуск 4, 2024 год



1. Dowson D., Cavitation in lubricating films supporting small loads., Proc. Inst. Mech. Eng.
Conf. Lubr. Wear, 1957, pp. 93-99.
2. P. G. Saffman, “The lift on a small sphere in a slow shear flow,” J. Fluid Mech.
22, 385–400 (1965).
3. Magnaudet and D. Legendre, “The viscous drag force on a spherical bubble
with a time-dependent radius,” Phys. Fluids 10, 550–554 (1998).
4. D. Legendre and J. Magnaudet, “The lift force on a spherical bubble in a viscous
linear shear flow,” J. Fluid Mech. 368, 81–126 (1998).
5. Tetsuya Kanagawa. How do various forces affect pressure waves in bubbly flows?
Phys. Fluids 36, 000000 (2024); doi: 10.1063/5.0187533.
6. B.B. Sharp, Cavity formation in simple pipes due to rupture of the water column,
Nature 185 (1960) 302–303, https://doi.org/10.1038/185302b0.
7. Zhao Pan. Cavitation onset caused by acceleration. PNAS, 2017,vol. 114,№ 32
www.pnas.org/cgi/doi/10.1073/pnas.1702502114
8. Zhichao Wang. Dynamics of cavitation bubbles in viscous liquids in a tube during a
transient process. Ultrasonics Sonochemistry, 104 (2024) 106840. https://doi.org/10.1016/j.ultsonch.2024.106840
9. Alejandro Clausse. The importance of the inertial coupling in the two-fluid model of two-phase flow. Physics of Fluids. March 2024. DOI: 10.1063/5.0185880
10. Merlen A., Frankiewicz C., Cylinder rolling on a wall at low Reynolds numbers, J. Fluid Mech., 2011,vol. 685, pp. 461–494. DOI:10.1017/jfm.2011.331
11. Monakhov A.A., Vapor-gas cavitation in a hydrophobic liquid. Collection "Modern
problems of aerohydrodynamics", MSU 2019, p. 77.[in Russian].
12. Monakhov A.A, Formation of Three-Phase Cavitation Bubbles with Their Own Electric Field in a Hydrophobic Liquid. Physical-Chemical Kinetics in Gas Dynamics 2023 V 24(4). http://chemphys.edu.ru/issues/2023-24-4/articles/1061
13. Monakhov A.A., Chernyavski V.M., Shtemler Yu. Bounds of cavitation inception in a creeping flow between eccentric cylinders rotating with a small minimum gap // Phys. Fluids. 2013. Vol. 25, iss. 9. https://doi.org/10.1063/1.4820482
14. Monakhov A., Bukharin N., Experimental Study of Cavitation Development and Secondary Circulation Flow between Two Eccentric Cylinders., Fluids, 2022, vol. 7, no. 11 https://doi.org/10.3390/fluids7110357
15. Ken. R. Shoulders: Energy conversion using high charge density. U.S. Patent 5,018,180, (May 21,1991).
16. Rosser, W. G. V. (1964). The Van Allen radiation zones. Contemporary Physics, 5(4), 255–269. https://doi.org/10.1080/00107516408203083