Calculation of coefficients of chemical reactions in a mixture of propane and air heated by microwave discharge plasma
The short residence time of the fuel mixture in the working chamber of the propulsion system at supersonic flow rates significantly complicates its ignition. One of the promising directions related to ensuring stable ignition of fuel mixtures in a wide range of speeds is the use of nonequilibrium plasma created, for example, using a microwave discharge. The practical implementation of this direction requires a detailed analysis of the plasma-chemical reactions occurring in the fuel mixture and finding the coefficients of the corresponding reactions. To find the coefficients of chemical reactions in a mixture of propane and air, the solution of the kinetic equation for the electron energy distribution function at a given amplitude and frequency of the external electric field is considered. Electrons are heated by a uniform electric field, collide with the components of the mixture, and perform elastic and inelastic collisions, which are taken into account in the form of the dependence of the reaction cross section on the kinetic energy of the electrons. The results obtained, processed in the form of dependences of the coefficients of chemical reactions on the parameters of the external electric field, are of interest for modeling the microwave discharge plasma used to ignite the fuel mixture.
electronic energy distribution function, chemical reaction, reaction coefficient, propane-air mixture, impact cross section, microwave discharge
Малое время пребывания топливной смеси в рабочей камере двигательной установки при сверхзвуковых скоростях потока в существенной степени осложняет ее воспламенение. Одно из перспективных направлений, связанных с обеспечением устойчивого поджига топливных смесей в широком диапазоне скоростей, состоит в использовании неравновесной плазмы, созданной, например, при помощи СВЧ-разряда. Практическая реализация такого направления требует детального анализа плазмохимических реакций, протекающих в топливной смеси, и нахождения коэффициентов соответствующих реакций. Для нахождения коэффициентов химических реакций в смеси пропана и воздуха рассматривается решение кинетического уравнения для функции распределения электронов по энергиям при заданной амплитуде и частоте внешнего электрического поля. Электроны нагреваются однородным электрическим полем, сталкиваются с компонентами смеси, совершают упругие и неупругие соударения, которые учитываются в виде зависимости сечения реакции от кинетической энергии электронов. Полученные результаты, обработанные в виде зависимостей коэффициентов химических реакций от параметров внешнего электрического поля, представляют интерес для моделирования плазмы СВЧ-разряда, используемой для поджига топливной смеси.
функция распределения электронной энергии, химическая реакция, коэффициент реакции, пропано-воздушная смесь, сечение соударения, СВЧ-разряд
1. Klimov A., Bityurin V., Kuznetsov A., Tolkunov B., Vystavkin N., Vasiliev M. External and internal plasma-assisted combustion // AIAA Paper. 2004. No.-2004-1014. 2. Ardelyan N., Bychkov V., Gromov V., Kosmachevskii K. Application of two plasma ignition enhancement methods of propane-air mixture // AIAA Paper. 2006. No. 2006-0612. 3. Chen Q., Ge J., Zheng T., Che X., Nie W. The role of non-equilibrium plasma kinetic effect on GCH4/GOX rocket engine combustion performance // Journal of Physics: Conference Series. 2020. Vol. 1707. 012015. 4. Bulat P.V., Grachev L.P, Esakov I.I., Ravaev A.A., Volkov K.N. Microwave ignition of a combustible gas mixture under a critical streamer discharge in a high-speed flow // Acta Astronautica. 2023. Vol. 213. P. 614–626. 5. Булат П.В., Волков К.Н., Грачев Л.П., Есаков И.И., Бычков В.Л. Влияние пучка ускоренных электронов и внешнего электрического поля на горение пропан-воздушной смеси в дозвуковом потоке воздуха // Теплофизика высоких температур. 2023. Т. 61. № 6. С. 904–913. 6. Булат П.В., Волков К.Н., Грачев Л.П., Есаков И.И., Лавров П.Б., Ренев М.Е. Воздействие электронного пучка и внешнего электрического поля на пропано-воздушную смесь // Инженерно-физический журнал. 2024. № 1. С. 111–117. 7. Bychkov V. L., Kochetov I.V., Bychkov D. V., Volkov S.A. Air-propane mixture ionization processes in gas discharges // IEEE Transactions on Plasma Science. 2009. Vol. 37. No.12. P. 2280–2285. 8. Zhou S., Nie W., Tian Y. High frequency combustion instability control by discharge plasma in a model rocket engine combustor // Acta Astronautica. 2021. Vol. 179. P. 391–406. 9. Starikovskaia S.M. Plasma assisted ignition and combustion // Journal of Physics D: Applied Physics. 2006. Vol. 39. No. 16. P. R265–R299. 10. Janev R.K., Reiter D. Collision processes of C2,3Hy and C2,3Hy+ hydrocarbons with electrons and protons // Physics of Plasmas. 2004. Vol. 11. No. 2. P. 780–829. 11. Feng R., Wang Z., Sun M., Wang H., Huang Y., Yang Y., Liu X., Wang C., Tian Y., Luo T., Zhu J. Multi-channel gliding arc plasma-assisted ignition in a kerosene-fueled model scramjet engine // Aerospace Science and Technology. 2022. Vol. 126. 107606. 12. Deng J., He L., Liu X., Chen Y. Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber // Plasma Science and Technology. 2018. Vol. 20. No. 12. 125502. 13. Sharma A., Subramaniam V., Solmaz E., Raja L. Fully coupled modeling of nanosecond pulsed plasma assisted combustion ignition // Journal of Physics D: Applied Physics. 2019. Vol. 52. No. 9. 095204. 14. Лебедев Ю.А., Татаринов А.В., Титов А.Ю., Эпштейн И.Л. Двумерная модель неравновесного сильно неоднородного СВЧ-разряда во внешнем постоянном поле // Ученые записки Казанского университета. 2014. Т. 156. № 4. С. 120–132. 15. Lebedev Yu.A., Epstein I.L., Yusupova E.V. Vibrational distribution of nitrogen molecules in the C3 u state in a near-surface microwave plasma in nitrogen at pressures of 1–5 Torr // Plasma Physics Reports. 2013 Vol. 39. No. 2. P. 183–187. 16. Смирнов Б.М. Комплексные ионы. Москва. Наука. 1983. 151 с. 17. Bulat P.V., Melnikova A.I., Renev M.E., Volkov K.N. Development of mathematical model and numerical simulation of plasma ignition of flammable mixture with microwave subcritical streamer discharge // Acta Astronautica. 2023. Vol. 204. P. 711–719. 18. Saifutdinov A.I., Kustova E.V. Dynamics of plasma formation and gas heating in a focused-microwave discharge in nitrogen // Journal of Applied Physics. 2021. Vol. 129. No. 2. 023301. 19. Bityurin V.A., Bocharov A.N., Dobrovolskaya A.S., Kuznetsova T.N., Popov N.A., Filimonova E.A. Numerical modeling of pulse-periodic nanosecond discharges // Journal of Physics: Conference Series. 2021. Vol. 2100. No. 1. 012032. 20. Duboc B., Ribert G., Domingo P. Description of kerosene / air combustion with hybrid transported-tabulated chemistry // Fuel. 2018. Vol. 233. P. 146–158. 21. Zettervall N., Fureby C., Nilsson E.J.K. A reduced chemical kinetic reaction mechanism for kerosene-air combustion // Fuel. 2020. Vol. 269. 117446. 22. Popov N.A., Starikovskaia S.M. Relaxation of electronic excitation in nitrogen/oxygen and fuel/air mixtures: fast gas heating in plasma-assisted ignition and flame stabilization // Progress in Energy and Combustion Science. 2022. Vol. 91. 100928.