Experimental and numerical exploration of the
influence of the shape of pin-fins on the friction factor of a finned tube
In this study, the aerodynamic characteristics of tubes with circular and drop-shaped pin-fins were investigated using both experimental and numerical methods across a range of Reynolds numbers from 7030 to 35170. Velocity and pressure contours were de-picted and discussed. The findings revealed that the minimum friction factor for finned tubes are achieved for tubes with drop-shaped pin-fins, being approximately (1.36-7.95)% lower than those for circular pin-fins. The study also presents correlations that enable the estimation of the friction factor for finned tubes.
В данном исследовании были изучены характеристики аэродинамики труб с круглым и каплевидным шипованным оребрением как экспериментальным, так и численным методами в диапазоне чисел Рейнольдса 7030 - 35170. Были получены и описаны контуры скорости и давления. Результаты показали, что минимальные значения коэффициента сопротивления для шипованных труб достигаются у труб с каплевидным шипованным оребрением и составляют на (1,36-7,95)% меньше, чем у труб с цилиндрическим шипованным оребрением. В работе представлены зависимости, которые позволяют оценить коэффициент аэродинамического сопротивления для оребренных труб.
1. Polat, M.E. Artificial neural network model and multi-objective optimization of microchannel heat sinks with diamond-shaped pin fins/ M.E. Polat, S. Cadirci// International Journal of Heat and Mass Transfer.– 2022.– Vol. 194, 123015. 2. Ravanji, A. Effects of elliptical pin-fins on heat transfer characteristics of a single impinging jet on a concave surface/ A. Ravanji, M.R. Zargarabadi// International Journal of Heat and Mass Transfer.– 2020.– Vol. 152.– 119532. 3. Chyu, M.K. Comparison of Heat Transfer From Staggered Pin Fin Arrays With Circular, Cubic and Diamond Shaped Elements/ M.K. Chyu, C.H. Yen, S. Siw// Turbo Expo: Power for Land, Sea, and Air/ GT2007-28306.– 2007.– Pp. 991-999. 4. Hussein, M.A. Dhaiban, An implementation study on a heat sink with different fin configurations under natural convective conditions/ M.A. Hussein, V.M. Hameed, H.T. Dhaiban// Case Studies in Thermal Engineering.– 2022.– Vol.30. 5. Fadi, A. Heat transfer intensification in MEMS two-fluid parallel flow heat exchangers by embedding pin fins in microchannels/A. Fadi, M.A. Issah, B. Mathew// International Journal of Thermofluids.– 2021.– Vol. 9. 6. Azar, K. Effect of pin fin density of the thermal performance of unshrouded pin fin heat sinks/ K. Azar, C.D. Mandrone// Transactions-American Society of Mechanical Engineers Journal of Electronic Packaging.– 1994.– Vol. 116.– Pp. 306-306. 7. Kotcioglu, I. Experimental study on the heat transfer and pressure drop of a cross-flow heat exchanger with different pin–fin arrays/ I. Kotcioglu, S. Caliskan, S. Baskaya// Heat and mass transfer.– 2011.– Vol. 47.– Pp. 1133-1142. 8. Haleh, S. Numerical study of heat transfer performance of single-phase heat sinks with micro pin-fin structures/S. Haleh, A. Omid, J. Khosrow, A. Goodarz // Applied Thermal Engineering.– 2013.– Vol. 58.– № 1-2.– Pp. 68-76. 9. Maghrabie, H.M. Microchannel heat sinks with nanofluids for cooling of electronic components: performance enhancement, challenges, and limitations/ H.M. Maghrabie, A.G. Olabi, E.T. Sayed, T. Wilberforce, K. Elsaid, M. H. Doranehgard, M.A. Abdelkareem// Thermal Science and Engineering Progress.– 2023.– Vol. 37.– 101608. 10. Lori, M.S. Heat transfer and fluid flow analysis of microchannel heat sinks with periodic vertical porous ribs/ M.S. Lori, K. Vafai // Applied Thermal Engineering.– 2022.– Vol. 205.– 118059. 11. Bhandari, P. Thermohydraulic investigation of open micro prism pin fin heat sink having varying prism sides/ P. Bhandari, D. Padalia, L. Ranakoti, R. Khargotra, K. Andras, T. Singh// Alexandria Engineering Journal.– 2023.– Vol. 69.– Pp. 457-468. 12. Bhandari, P. Influences of tip clearance on flow and heat transfer characteristics of open type micro pin fin heat sink/ P. Bhandari, Y.K. Prajapati// International Journal of Thermal Sciences.– 2022.– Vol. 179.– 107714. 13. Ndao, S. Effects of pin-fin shape and configuration on the single-phase heat transfer characteristics of jet impingement on micro pin-fins/ S. Ndao, Y. Peles, M.K. Jensen// International Journal of Heat and Mass Transfer.– 2014.– Vol. 70.– Pp. 856-863. 14. Izci, T. The effect of micro pin-fin shape on thermal and hydraulic performance of micro pin-fin heat sinks/ T. Izci, M. Koz, A. Kosar// Heat Transfer Engineering.– 2015.– Vol. 36.– № 17.– Pp. 1447-1457. 15. Bayata, H. Experimental study of thermal–hydraulic performance of cam-shaped tube bundle with staggered arrangement/ H. Bayata, A.M. Lavasani, T. Maarefdoosta// Energy Conversion and Management.– 2014.– Vol. 85.– Pp. 470-476. 16. Lavasani, A.M. Experimental study of convective heat transfer from in-line cam shaped tube bank in crossflow/ A.M. Lavasani, H. Bayat, T. Maarefdoost// Applied thermal engineering.– 2016.– Vol. 65.– № 1-2.– Pp. 85-93. 17. Zhukova, Yu.V. Convective heat transfer and drag of two side-by-side tubes in the narrow channel at different reynolds number/ Yu.V. Zhukova, A.M. Terekh, A.I Rudenko // Doklady of the National Academy of Sciences of Belarus.– 2018.– Vol. 62.– № 6.– Pp. 756–762. 18. Deeb, R. Numerical analysis of heat transfer and fluid flow around circular and non-circular tubes/ R. Deeb, D.V. Sidenkov// IOP Conf. Series: Journal of Physics.– 2021.– Vol. 2088.– № 1. DOI: 10.1088/1742-6596/2088/1/012008. 19. Wang, J. Numerical simulation with a TVD-FVM method for circular cylinder wake control by a fairing/ J. Wang, H. Zheng , Z. Tian// Journal of Fluids and Structures.– 2015.– Vol. 57.– Pp. 15-31. 20. Deeb, R. Effect of Longitudinal Spacing on The Flow and Heat Transfer for Staggered Drop-shaped Tubes Bundle in Cross-flow/ R. Deeb// Physical-Chemical Kinetics in Gas Dynamics.– 2020.– Vol. 21.– № 1.– Pp. 1–16. 21. Дееб, Р. Влияние угла атаки на теплообменные и гидродинамические характеристики шахматного пучка труб каплевидной формы в поперечном обтекании/ Р. Дееб// Доклады АН ВШ РФ.– 2020.–Т. 48.– № 3.– C. 21–36. 22. Дееб, Р. Экспериментальное и численное исследование влияния угла атаки на характеристики воздушного потока при обтекании одиночной каплевидной трубы/ Р. Дееб// Физико-химическая кинетика в газовой динамике.– 2021.– Т. 22.– № 2.– С. 53-67. 23. Дееб, Р. Влияние угла атаки на характеристики теплообмена при обтекании одиночной каплевидной трубы/ Р. Дееб// Физико-химическая кинетика в газовой динамике.– 2021.– Т. 22.– № 5.– С. 43-63. 24. Дееб, Р. Оценка моделей турбулентности для моделирования теплообмена и гидродинамики труб каплевидной формы/ Р. Дееб, А.В. Колотвин, Д.В. Сиденков// Международной академии холода.– 2022.– № 2.– С. 61-69. 25. Дееб, Р. Численный анализ влияния относительного продольного и поперечного шагов на характеристики потока шахматного пучка труб каплевидной формы// Р. Дееб// Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки.– 2023.– Т. 106.– № 1.– С. 95-116. 26. Дееб, Р. Теплоаэродинамические характеристики шахматного смешанного пучка круглых и каплевидных труб/ Р. Дееб// Физико-химическая кинетика в газовой динамике.– 2022.– Т. 23.– № 2.– С. 15-37. 27. Дееб, Р. Повышение эффективности пучков каплевидных труб за счет управления углом атаки/ Р. Дееб, Д. В. Сиденков //Физико-химическая кинетика в газовой динамике.– 2023.– Т.24.– № 3.– С. 1-16. 28. Дееб, Р. Снижение коэффициента гидродинамического сопротивления пучка каплевидных труб за счет изменения углов атаки/ Р. Дееб// Вестник Тепловые процессы в технике.– 2023.–Т. 15.– № 5.– C. 222– 233. 29. ANSYS Fluent Reference Guide. ANSYS. Inc. Release 16.0. 2015. 30. Cengel, Y.A. Heat Transfer: A Practical Approach/ Y.A. Cengel// McGraw-Hill, New Jersey.– 2002.– Vol. 2.– P. 932.