Экспериментальное и численное исследование влияния формы шипов на коэффициент аэродинамического сопротивления оребренной трубы



Experimental and numerical exploration of the influence of the shape of pin-fins on the friction factor of a finned tube

In this study, the aerodynamic characteristics of tubes with circular and drop-shaped pin-fins were investigated using both experimental and numerical methods across a range of Reynolds numbers from 7030 to 35170. Velocity and pressure contours were de-picted and discussed. The findings revealed that the minimum friction factor for finned tubes are achieved for tubes with drop-shaped pin-fins, being approximately (1.36-7.95)% lower than those for circular pin-fins. The study also presents correlations that enable the estimation of the friction factor for finned tubes.

drop-shaped tube, circular tube, fin, finned tube, heat exchanger, friction factor, experimental study, numerical study, Fluent


Том 25, выпуск 3, 2024 год



В данном исследовании были изучены характеристики аэродинамики труб с круглым и каплевидным шипованным оребрением как экспериментальным, так и численным методами в диапазоне чисел Рейнольдса 7030 - 35170. Были получены и описаны контуры скорости и давления. Результаты показали, что минимальные значения коэффициента сопротивления для шипованных труб достигаются у труб с каплевидным шипованным оребрением и составляют на (1,36-7,95)% меньше, чем у труб с цилиндрическим шипованным оребрением. В работе представлены зависимости, которые позволяют оценить коэффициент аэродинамического сопротивления для оребренных труб.

каплевидная труба, круглая труба, ребро, оребренная труба, теплообменник, коэффициент аэродинамического сопротивления, экспериментальное исследование, численное исследование, CFD, Fluent


Том 25, выпуск 3, 2024 год



1. Polat, M.E. Artificial neural network model and multi-objective optimization of microchannel heat sinks with diamond-shaped pin fins/ M.E. Polat, S. Cadirci// International Journal of Heat and Mass Transfer.– 2022.– Vol. 194, 123015.
2. Ravanji, A. Effects of elliptical pin-fins on heat transfer characteristics of a single impinging jet on a concave surface/ A. Ravanji, M.R. Zargarabadi// International Journal of Heat and Mass Transfer.– 2020.– Vol. 152.– 119532.
3. Chyu, M.K. Comparison of Heat Transfer From Staggered Pin Fin Arrays With Circular, Cubic and Diamond Shaped Elements/ M.K. Chyu, C.H. Yen, S. Siw// Turbo Expo: Power for Land, Sea, and Air/ GT2007-28306.– 2007.– Pp. 991-999.
4. Hussein, M.A. Dhaiban, An implementation study on a heat sink with different fin configurations under natural convective conditions/ M.A. Hussein, V.M. Hameed, H.T. Dhaiban// Case Studies in Thermal Engineering.– 2022.– Vol.30.
5. Fadi, A. Heat transfer intensification in MEMS two-fluid parallel flow heat exchangers by embedding pin fins in microchannels/A. Fadi, M.A. Issah, B. Mathew// International Journal of Thermofluids.– 2021.– Vol. 9.
6. Azar, K. Effect of pin fin density of the thermal performance of unshrouded pin fin heat sinks/ K. Azar, C.D. Mandrone// Transactions-American Society of Mechanical Engineers Journal of Electronic Packaging.– 1994.– Vol. 116.– Pp. 306-306.
7. Kotcioglu, I. Experimental study on the heat transfer and pressure drop of a cross-flow heat exchanger with different pin–fin arrays/ I. Kotcioglu, S. Caliskan, S. Baskaya// Heat and mass transfer.– 2011.– Vol. 47.– Pp. 1133-1142.
8. Haleh, S. Numerical study of heat transfer performance of single-phase heat sinks with micro pin-fin structures/S. Haleh, A. Omid, J. Khosrow, A. Goodarz // Applied Thermal Engineering.– 2013.– Vol. 58.– № 1-2.– Pp. 68-76.
9. Maghrabie, H.M. Microchannel heat sinks with nanofluids for cooling of electronic components: performance enhancement, challenges, and limitations/ H.M. Maghrabie, A.G. Olabi, E.T. Sayed, T. Wilberforce, K. Elsaid, M. H. Doranehgard, M.A. Abdelkareem// Thermal Science and Engineering Progress.– 2023.– Vol. 37.– 101608.
10. Lori, M.S. Heat transfer and fluid flow analysis of microchannel heat sinks with periodic vertical porous ribs/ M.S. Lori, K. Vafai // Applied Thermal Engineering.– 2022.– Vol. 205.– 118059.
11. Bhandari, P. Thermohydraulic investigation of open micro prism pin fin heat sink having varying prism sides/ P. Bhandari, D. Padalia, L. Ranakoti, R. Khargotra, K. Andras, T. Singh// Alexandria Engineering Journal.– 2023.– Vol. 69.– Pp. 457-468.
12. Bhandari, P. Influences of tip clearance on flow and heat transfer characteristics of open type micro pin fin heat sink/ P. Bhandari, Y.K. Prajapati// International Journal of Thermal Sciences.– 2022.– Vol. 179.– 107714.
13. Ndao, S. Effects of pin-fin shape and configuration on the single-phase heat transfer characteristics of jet impingement on micro pin-fins/ S. Ndao, Y. Peles, M.K. Jensen// International Journal of Heat and Mass Transfer.– 2014.– Vol. 70.– Pp. 856-863.
14. Izci, T. The effect of micro pin-fin shape on thermal and hydraulic performance of micro pin-fin heat sinks/ T. Izci, M. Koz, A. Kosar// Heat Transfer Engineering.– 2015.– Vol. 36.– № 17.– Pp. 1447-1457.
15. Bayata, H. Experimental study of thermal–hydraulic performance of cam-shaped tube bundle with staggered arrangement/ H. Bayata, A.M. Lavasani, T. Maarefdoosta// Energy Conversion and Management.– 2014.– Vol. 85.– Pp. 470-476.
16. Lavasani, A.M. Experimental study of convective heat transfer from in-line cam shaped tube bank in crossflow/ A.M. Lavasani, H. Bayat, T. Maarefdoost// Applied thermal engineering.– 2016.– Vol. 65.– № 1-2.– Pp. 85-93.
17. Zhukova, Yu.V. Convective heat transfer and drag of two side-by-side tubes in the narrow channel at different reynolds number/ Yu.V. Zhukova, A.M. Terekh, A.I Rudenko // Doklady of the National Academy of Sciences of Belarus.– 2018.– Vol. 62.– № 6.– Pp. 756–762.
18. Deeb, R. Numerical analysis of heat transfer and fluid flow around circular and non-circular tubes/ R. Deeb, D.V. Sidenkov// IOP Conf. Series: Journal of Physics.– 2021.– Vol. 2088.– № 1. DOI: 10.1088/1742-6596/2088/1/012008.
19. Wang, J. Numerical simulation with a TVD-FVM method for circular cylinder wake control by a fairing/ J. Wang, H. Zheng , Z. Tian// Journal of Fluids and Structures.– 2015.– Vol. 57.– Pp. 15-31.
20. Deeb, R. Effect of Longitudinal Spacing on The Flow and Heat Transfer for Staggered Drop-shaped Tubes Bundle in Cross-flow/ R. Deeb// Physical-Chemical Kinetics in Gas Dynamics.– 2020.– Vol. 21.– № 1.– Pp. 1–16.
21. Дееб, Р. Влияние угла атаки на теплообменные и гидродинамические характеристики шахматного пучка труб каплевидной формы в поперечном обтекании/ Р. Дееб// Доклады АН ВШ РФ.– 2020.–Т. 48.– № 3.– C. 21–36.
22. Дееб, Р. Экспериментальное и численное исследование влияния угла атаки на характеристики воздушного потока при обтекании одиночной каплевидной трубы/ Р. Дееб// Физико-химическая кинетика в газовой динамике.– 2021.– Т. 22.– № 2.– С. 53-67.
23. Дееб, Р. Влияние угла атаки на характеристики теплообмена при обтекании одиночной каплевидной трубы/ Р. Дееб// Физико-химическая кинетика в газовой динамике.– 2021.– Т. 22.– № 5.– С. 43-63.
24. Дееб, Р. Оценка моделей турбулентности для моделирования теплообмена и гидродинамики труб каплевидной формы/ Р. Дееб, А.В. Колотвин, Д.В. Сиденков// Международной академии холода.– 2022.– № 2.– С. 61-69.
25. Дееб, Р. Численный анализ влияния относительного продольного и поперечного шагов на характеристики потока шахматного пучка труб каплевидной формы// Р. Дееб// Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки.– 2023.– Т. 106.– № 1.– С. 95-116.
26. Дееб, Р. Теплоаэродинамические характеристики шахматного смешанного пучка круглых и каплевидных труб/ Р. Дееб// Физико-химическая кинетика в газовой динамике.– 2022.– Т. 23.– № 2.– С. 15-37.
27. Дееб, Р. Повышение эффективности пучков каплевидных труб за счет управления углом атаки/ Р. Дееб, Д. В. Сиденков //Физико-химическая кинетика в газовой динамике.– 2023.– Т.24.– № 3.– С. 1-16.
28. Дееб, Р. Снижение коэффициента гидродинамического сопротивления пучка каплевидных труб за счет изменения углов атаки/ Р. Дееб// Вестник Тепловые процессы в технике.– 2023.–Т. 15.– № 5.– C. 222– 233.
29. ANSYS Fluent Reference Guide. ANSYS. Inc. Release 16.0. 2015.
30. Cengel, Y.A. Heat Transfer: A Practical Approach/ Y.A. Cengel// McGraw-Hill, New Jersey.– 2002.– Vol. 2.– P. 932.