Passive Control on Supersonic Annular Cavity Flow




The mode of supersonic flow around the cavity depends on the parameters of the incoming flow and the geometry of the cavity. In a certain range of ratios between the length and depth of the cavity, both open and closed flow modes in the cavity can be established. An important practical task is to find ways to control the flow regimes in the cavity, in particular, ways to expand the area of favorable open flow regimes. This paper presents the results of an experimental study of supersonic flow around an annular cavity formed by a coaxial conical tip and a cylindrical body connected by a cylindrical rod. A perforated interceptor is used to control the flow mode in the cavity at different angles of the tip cone. With a continuous change in the length of the cavity in the flow, the boundaries of the regions of unambiguous and ambiguous flow regimes in the cavity are determined. The data obtained indicate the possibility of significantly expanding the area of open flow modes in the cavity.

annular cavity, permeable interceptor, supersonic flow, flow separation, hysteresis


Volume 25, issue 3, 2024 year


Пассивное управление потоком в сверхзвуковой кольцевой каверне

Режим сверхзвукового обтекания каверны зависит от параметров набегающего потока и геометрии каверны. В определенном интервале соотношений между длиной и глубиной каверны может устанавливаться как открытый, так и замкнутый режим течения в каверне. Важной практической задачей является поиск способов управления режимами течения в каверне, в частности, способов расширения области благоприятных открытых режимов течения. В настоящей работе представлены результаты экспериментального исследования сверхзвукового обтекания кольцевой каверны, образованной соосными коническим наконечником и цилиндрическим телом, соединенных цилиндрическим стержнем. Для управления режимом течения в каверне при разных углах конуса наконечника использован перфорированный интерцептор. При непрерывном изменении протяженности каверны в потоке определены границы областей однозначных и неоднозначных режимов течения в каверне. Полученные данные указывают на возможность значительно расширить область открытых режимов течения в каверне.

кольцевая каверна, проницаемый интерцептор, сверхзвуковой поток, отрыв потока, гистерезис


Volume 25, issue 3, 2024 year



1. Lawson S.J., Barakos G.N. Review of numerical simulations for high-speed, turbulent cavity flows // Progress in Aerospace Sciences. 2011. 47 (3). 186-216. https://doi.org/10.1016/j.paerosci.2010.11.002.
2. Chang P.K. Separation of Flow. Vol. 2, Pergamon, Oxford, 1970.
3. Guvernyuk S.V., Zubkov A.F., and Simonenko M.M. Experimental Investigation of the Supersonic Flow over an Axisymmetric Annular Cavity, J. Eng. Phys. and Thermophys. 2016. 89 (3). 678-687. https://doi.org/10.1007/s10891-016-1426-4.
4. Guvernyuk S., Simonenko M., Zubkov A. Experimental study of supersonic flow around an axisymmetric annular cavity at angles of attack // Acta Astronautica. 2021. Vol. 180. 693–700. http://dx.doi.org/10.1016/j.actaastro.2021.01.013.
5. Guvernyuk S.V., Zubkov A.F., Simonenko M.M., and Shvetz A.I. Experimental investigation of three-dimensional supersonic flow past an axisymmetric body with an annular cavity, Fl. Dyn. 2014. 49 (4). 540-546. https://doi.org/10.1134/S0015462814040140.
6. Guvernyuk S.V., Zubkov A.F., and Simonenko M.M. On Supersonic Flow over Circular Cavities at Angle of Attack, Phys.-Chem. Kin. Gas Dyn. 2018. 19(1). http://doi.org/10.33257/PhChGD.19.1.734.
7. Simonenko M.M., Zubkov A.F. Supersonic flow modes of annular cavities at angles of attack // Phys.-Chem. Kin. Gas Dyn. 2023. 24(3). http://chemphys.edu.ru/issues/2023-24-3/articles/1046/.
8. Simonenko M. M., Guvernyuk S. V., Zubkov A. F. Hysteresis properties of supersonic flow past an annular cavity at angles of attack // AIP Conference Proceedings. 2023. Vol. 2549, No. 1. P. 070004. http://dx.doi.org/10.1063/5.0107904.
9. Mohri K., Hillier R. Computational and experimental study of supersonic flow over axisymmetric cavities // Shock Waves. 2011. 21. 175-191. https://doi.org/10.1007/s00193-011-0312-4.
10. Shishaeva A.S., Simonenko M.M., Guvernyuk S.V., Aksenov A.A. Numerical Simulation of Aerodynamic Hysteresis in Supersonic Flow Over an Axisymmetric Body with Annular Cavity in FlowVision CFD Soft-ware // Phys.-Chem. Kin. Gas Dyn. 2017. 18(1). http://chemphys.edu.ru/issues/2017-18-1/articles/696/.
11. Ivanov I.E., Kryukov I.A., Larina E.V., Tarasevich A.G. Numerical Simulation of Flow over Axisymmetric Body with Annular Cavity // Phys.-Chem. Kin. Gas Dyn. 2015. 16(2). http://chemphys.edu.ru/issues/2015-16-2/articles/583/.
12. Ivanov I.E., Kryukov I.A., Larina E.V., and Glushko G.S. Turbulent flow over an axisymmetric body with annular cavity // Journal of Physics: Conference Series. 2017. V. 815 (012017). https://doi.org/10.1088/1742-6596/815/1/012017.
13. Jianbo Zhang, Etsuo Morishita, Takeo Okunuki, and Hiroshi Itoh. Effects of Three Types of Control Devices on Closed-Type Supersonic Cavity Flows // Trans. Japan Soc. Aero. Space Sci. 2003. Vol. 46. No. 152. 113–120. https://doi.org/10.2322/tjsass.46.113.
14. Selin Aradag, Kubra Asena Gelisli, and Elcin Ceren Yaldir. Effects of Active and Passive Control Techniques on Mach 1.5 Cavity Flow Dynamics // International Journal of Aerospace Engineering. 2017, Article ID 8253264, 24 pages. https://doi.org/10.1155/2017/8253264.
15. Sinha J., Das S., Kumar P., and Prasad J.K. Computational Investigation of Control Effectiveness on a Near Transition Open and Closed Axisymmetric Cavity // Advances in Aerospace Science and Applications. 2014. Vol. 4, No 1, 45-52.
16. Shishaeva A.S., Simonenko M.M., Guvernyuk S.V., Aksenov A.A. Numerical simulation of flow control by a heat pulse under aerodynamic hysteresis in supersonic flow over an axisymmetric body with annular cavity // Phys.-Chem. Kin. Gas Dyn. 2019. 20 (3). http://chemphys.edu.ru/issues/2019-20-3/articles/834.
17. Chernyi G.G. et al. (eds.), Aerodynamic Setups of the Research Institute of Mechanics, Moscow State University [in Russian], Moscow Univ. Press. Moscow. 1985. https://www.imec.msu.ru/pages/02/10/10/1374853/.
18. Malik M.R. Prediction and control of transition in supersonic and hypersonic boundary layers. AIAA Journal. 1989. Vol. 27 (11) 1487-1493.