Numerical modeling was carried out using a three-parameter differential RANS turbulence model supplemented with a transport equation for turbulent heat flow. The influence of the angle of inclination of the confuser wall and the Reynolds number on the characteristics of flow and heat transfer in the boundary layer is considered. The calculation results are compared with known experimental data.
flow with heat exchange, flat confuser, RANS-turbulence model.
Численное моделирование течения и теплообмена в плоском конфузоре
Численное моделирование проведено с использованием трехпараметрической диффе-ренциальной RANS-модели турбулентности, дополненной уравнением переноса для турбулентного потока тепла. Рассмотрено влияние, угла наклона стенки конфузора и числа Рейнольдса на характеристики течения и теплообмена в пограничном слое. Про-ведено сравнение результатов расчета с известными экспериментальными данными.
течение с теплообменом, плоский конфузор, RANS-модель турбулентности.
1. Sternberg J., The Transition from a Turbulent to a Laminar Boundary Layer, US Army Bal. Res. Lab. Aberdeen, Rep. 906 (1954). 2. Ginevskii A. S., Ioselevich V. A., Kolesnikov A. V., Lapin Yu. V., Pilipenko V. N., and Sekun-dov A. N., Methods of Calculation of Turbulent Boundary Layers, in: Advances in Science and En-gineering. All-Union Institute of Science and Technical Information. Fluid Mech. Series. Vol. 11 (Moscow, 1978), p. 155 [in Russian]. 3. Narashima R. and Sreenivasan K. R., Relaminarization Fluid Flows, Adv. Appl. Mech. Vol. 19. P. 221 (1979). 4. Kader B. A. and Yaglom A. M., Effect of Roughness and a Longitudinal Pressure Gradient on Tur-bulent Boundary Layers, in: Advances in Science and Engineering. All-Union Institute of Science and Technical Information. Fluid Mech. Series. Vol. 18 (Moscow, 1984), p. 3 [in Russian]. 5. Lushchik V. G., Pavel’ev A. A., and Yakubenko A. E., Transport Equations for Turbulence Characteristics: Models and Results of Calculations, in: Advances in Science and Engineering. All-Union Institute of Science and Technical Information. Fluid Mech. Series, Vol. 22 (Moscow, 1988), p. 3. [in Russian] 6. Moretti P. H. and Kays V. M., Heat Transfer in Turbulent Boundary Layer with Varying Freestream Velocity and Varying Surface Temperature —an Experimental Study, Int. J. Heat Mass Transfer 8, 1187 (1965). 7. Sreenivasan K. R., Laminariscent, Relaminarizing and Retransitional Flows, Acta Mech. 44, 1 (1982). 8. Badry Narayanan M. A. and Ramjee V., On the Criteria for Reverse Transition in a Two-Dimensional Boundary-Layer Flow, J. Fluid Mech. 35 (2), 225 (1969). 9. Sekundov A. N., Application of a Differential Equation for Turbulent Viscosity to the Analysis of Plane Non-Self-Similar Flows, Fluid Dynamics 6 (5), 828 (1971). 10. Volchkov E. P., Makarov M. S., and Sakhnov A. Yu., Boundary Layer with Asymptotic Favourable Pressure Gradient, Int. J. Heat Mass Transfer 53, 2837 (2010). 11. Bourassa C. and Thomas F. O., An Experimental Investigation of a Highly Accelerated Turbulent Boundary Layer, J. Fluid Mech. 634, 359 (2009). 12. Jones M. B., Marusic I., and Perry A. E., Evolution and Structure of Sink-Flow Turbulent Boundary Layers, J. Fluid Mech. 428, 1 (2001). 13. Escuder M. P., Abdel-Hameed A., Johnson M. W., and Sutcliffe C. J., Laminarization and Retransition of a Turbulent Boundary Layer Subjected to Favourable Pressure Gradient, Exp. Fluids 25, 491 (1998). 14. Bankston C. A., The Transition from Turbulent to Laminar Gas Flow in a Heated Pipe, J. Heat Transfer 92 (4), 569 (1970). 15. Leont’ev A. I., Oblivin A. N., and Romanenko P. N., Investigation of Drag and Heat Transfer in Turbulent Air Flows in Axisymmetric Channels with a Longitudinal Pressure Gradient, Zh. Prikl. Mekh. Tekhn. Fiz. 5, 17 (1961). 16. Tanaka H. and Shimitzu J.-I., Laminarization in Low Reynolds Number Turbulent Duct Flows, J. Heat Transfer 99 (4), 682 (1977). 17. Tanaka H., Kawamura H., Tateno A., and Hatamiya S., Effect of Laminarization and Retransition on Heat Transfer for Low Reynolds Number Flows through a Converging to Constant Area Duct, J. Heat Transfer 104 (2), 363 (1982). 18. Talamelli A., Fornaciari N., Johan K., Westin A., and Alfredsson P. H., Experimental Investigation of Streaky Structures in a Relaminarizing Boundary Layer, J. Turbulence, 3, 018 (2002). 19. Ichimiya M., Nakamura I., and Yamashita S., Properties of a Relaminarizing Turbulent Boundary Layer under a Favorable Pressure Gradient, Exp. Thermal Fluid Sci. 17 (1–2), 37 (1998). 20. Ichimiya M., Nakase Y., Nakamura I., Yamashita S., Fukutomi J., and Yoshikawa M., Properties of a Relaminarizing Turbulent Boundary Layer under a Favorable Pressure Gradient (Analysis of Bursting Structure with VITA Technique), Trans. Japan Soc.Mech. Engineers Part B 62 (594), 483 (1998). 21. Schlichting H., Boundary Layer Theory (McGraw-Hill, New York, 1979). 22. Oriji U. R., Karimisani S., and Tucker P. G., RANS Modeling of Accelerating Boundary Layers, J. Fluid Eng. Trans. ASME 137 (1), Paper No. A12 (2015). 23. Lushchik V. G., Pavel’ev A. A., and Yakubenko A. E., Three-Parameter Model of Shear Turbulence, Fluid Dynamics 13 (3), 350 (1978). 24. Reshmin A. I., Trifonov V. V., Lushchik V. G., Makarova M. S., On the Possibility of Reducing Friction due to Relaminarization of the Flow in the Pipe, Physical-Chemical Kinetics in Gas Dynamics 2019 V20 (2) http://chemphys.edu.ru/issues/2019-20-2/articles/832 25. Lushchik V. G., Makarova M. S., Reshmin A. I., Laminarization of Flow with Heat Transfer in a Plane Channelwith a Confuser, Fluid Dynamics, 2019, Vol. 54, No. 1, pp. 66–75. 26. Lushchik V.G., Pavel’ev A. A., and Yakubenko A. E., Three-ParameterModel of Turbulence. Heat Transfer Calculations, Fluid Dynamics 21 (2), 200 (1986). 27. Lushchik V. G., Makarova M. S., Reshmin A. I., Intensification of Heat Transfer in Heat Exchangers with Diffuser, Physical-Chemical Kinetics in Gas Dynamics 2019 V20 (2) http://chemphys.edu.ru/issues/2023-24-2/articles/1030 28. Shakirov R. R., Davletshin I. A. & Mikheev N. I., Kinematic structure of flow and the heat transfer in flat diffuser and confuser channels, Thermophys. Aeromech. 29, 759–764 (2022). https://doi.org/10.1134/S08698643220500146 29. Repik E. U., Sosedko Y. P. Control of the level of flow turbulence - M.: Publishing House of Fiziko-Mathematical Literature, 2002. - 244 p. -- ISBN 5-94052-055-3, in Russian. 30. Reshmin A. I., Trifonov V. V., Lushchik V. G., Effect of Inlet Conditions on the Flow and Heat Transfer in a Flat Diffuser, Physical-Chemical Kinetics in Gas Dynamics 2023 V 24(5) http://chemphys.edu.ru/issues/2023-24-5/articles/1066 31. Petukhov B. S., Polyakov A. F., Experimental study of heat transfer during viscous-gravitational fluid flow in a horizontal pipe, TVT, 5:1 (1967), 87–95, https://www.mathnet.ru/eng/tvt/v5/i1/p87, in Russian. 32. Polyakov A. F. and Shindin S. A., Turbulent momentum and heat transfer in a rising air flow in heated pipes, in: Turbulent Heat Transfer with Mixed Convection in Vertical Pipes [in Russian], IVTAN, Moscow (1989), p. 49. 33. Lushchik V. G., Yakubenko A. E. Differential model of turbulence: A numerical study of mixed convection in vertical pipes. Fluid Dyn 31, 224–234 (1996). https://doi.org/10.1007/BF02029681