Fine Structure of the Compound Drop Substance Distribution in the Target Fluid in the Splash Formation Mode
The evolution of the regular fine structure of the distribution pattern of a colored substance during the spreading of a freely falling compound drop in deep water was traced for the first time using technical photo and video recording methods. The flow pattern was studied at the initial stage of the formation of the cavity and crown during the merging of a compound drop, the core of which, a drop of alizarin ink solution, was covered with an oil shell. Banded struc-tures were observed in the distribution of the colored liquid at the bottom of the cavern and the walls of the crown. The formation of banded elements of the flow pattern is associated with the influence of the processes of conversion of available potential surface energy (APSE) dur-ing the destruction of the contact surfaces of merging liquids. The position of the nucleus in the drop was not controlled and was determined by the formation conditions. The breakdown of the ink core into fibers was observed in all experiments in this series. The area of coverage of the surface of the cavity and the crown with the colored liquid reached a maximum at the central position of the core.
Эволюция регулярной тонкой структуры картины распределения окрашенного вещества при растекании свободно падающей составной капли в глубокой воде впервые прослежена методами технической фото- и видеорегистрации. Изучалась картина течения на начальном этапе формирования каверны и венца при слиянии составной капли, ядро которой – капля раствора ализариновых чернил, было покрыто масляной оболочкой. В картине распределения окрашенной жидкости на дне каверны и стенках венца наблюдались полосчатые структуры. Формирование полосчатых элементов картины течений связывается с влиянием процессов конверсии доступной потенциальной поверхностной энергии (ДППЭ) при уничтожении контактных поверхностей сливающихся жидкостей. Положение ядра в капле не контролировалось и определялось условиями формирования. Распад чернильного ядра на волокна наблюдался во всех опытах данной серии. Площадь покрытия поверхности каверны и венца окрашенной жидкостью достигала максимума при центральном положении ядра.
1. Thomson J.J., Newall H.F., On the formation of vortex rings by drops falling into liquids, and some allied phenomena. Proc. R. Soc. London, 1885, vol. 29, pp. 417–436. 2. Worthington A. The splash of the drop. Series “The romance of science”, E. & J.B. Young & Co: New York, USA, 1895. 92 p. 3. Blanken N., Saleem M.S., Thoraval M.-J., Antonini C., Impact of compound drops: a perspec-tive, Current Opinion in Colloid & Interface Science, 2020, vol.51, pp.101389. https://doi.org/10.1016/j.cocis.2020.09.002 4. Agbaglah G., Thoraval M.-J., Thoroddsen S., Zhang L., Fezzaa K., Deegan R., Drop impact into a deep pool: vortex shedding and jet formation, J. Fluid Mech., 2015, vol. 764, pp. R1–12. DOI: 10.1017/jfm.2014.723 5. Thoroddsen S. T., Etoh T. G., Takehara K., High-Speed Imaging of Drops and Bubbles, Ann. Rev. of Fluid Mech., 2008, vol. 40, no.1, pp. 257–285. doi:10.1146/annurev.fluid.40.111406.102215 6. Lohse D., Fundamental fluid dynamics challenges in inkjet printing, Ann. Rev. of Fluid Mech., 2022, vol. 54, pp. 349. https://doi.org/10.1146/annurev-fluid-022321-114001 7. Landau L.D., Lifshitz E.M., Fluid Mechanics. V.6. Course of Theoretical Physics. Pergamon Press: Oxford, UK, 1987. 560 p. 8. Müller P., The equations of oceanic motions. CUP: Cambridge, UK, 2006. 302 p. 9. Chashechkin Y. D., Foundations of engineering mathematics applied for fluid flows, Axioms, 2021, vol. 10, no. 4, pp. 286. https://doi.org/10.3390/axioms10040286 10. Gibbs J.W., Elementary principles in statistical mechanics, Scribner's and sons: New York, US, 1902. 207 p. 11. Feistel R., Thermodynamic properties of seawater, ice and humid air: TEOS-10, before and beyond, Ocean. Sci., 2018, vol. 14, pp. 471–502. DOI:10.5194/os-14-471-2018 12. Landau L.D., Lifshitz E.M., Mechanics: Volume 1, Butterworth-Heinemann: Oxford, UK, 1976. 169 p. 13. Brackbill J.U., Kothe D.B., Zemach C., A continuum method for modelling surface tension, J. Comput. Phys., 1992, vol. 100, no.2, pp. 335–354. doi:10.1016/0021-9991(92)90240-y 14. Bisighini A., Cossali G. E., Tropea C., Roisman I.V., Crater evolution after the impact of a drop onto a semi-infinite liquid target, Phys. Rev., 2010, E 82(3, Pt.2), pp. 036319. DOI: 10.1103/PhysRevE.82.036319 15. Popinet S., Numerical models of surface tension, Ann. Rev. of Fluid Mech., 2018, vol. 50, pp. 49–75. https://doi.org/10.1146/annurev-fluid-122316-045034 16. Castrejón-Pita A. A., Castrejón-Pita J. R., Hutchings I. M., Experimental observation of von Kármán vortices during drop impact, Phys. Rev., 2012, vol. 86, no.4, pp. 045301. doi:10.1103/physreve.86.045301 17. Das S.K., Dalal A., Breuer M., Biswas G., Evolution of jets during drop impact on a deep liquid pool, Phys. Fluids, 2022, vol. 34, pp. 022110. https://doi.org/10.1063/5.0081064 18. Rein M., Phenomena of liquid drop impact on solid and liquid surfaces, Fluid Dyn. Re-search, 1993, vol. 12, no.2, pp. 61–93. doi:10.1016/0169-5983(93)90106-k 19. Wang L., Thoraval M.-J., Air-in-liquid compound drop impact onto a pool, Phys. Fluids, 2022, vol. 34, pp. 102101. DOI: 10.1063/5.0086745 20. Sapei L., Naqvi M.A., Rousseau D., Stability and release properties of double emulsions for food applications, Food Hydrocolloids, 2012, vol. 27, no.2, pp. 316–323. DOI:10.1016/j.foodhyd.2011.10.008 21. Johnson R.E., Sadhal S.S., Fluid mechanics of compound multiphase drops and bubbles, Ann. Rev. of Fluid Mech., 1985, vol. 17, no.1, pp. 289–320. doi:10.1146/annurev.fl.17.010185.001445 22. Kolesky D.B., Truby R.L., Gladman A.S., Busbee T.A., Homan K.A., Lewis J.A., 3D bio-printing of vascularized, heterogeneous cell-laden tissue constructs, Adv. Mater., 2014, vol. 26, pp. 3124–3130. https://doi.org/10.1002/adma.201305506 23. Kan H.C., Udaykumar H.S, Shyy W., Tran-Son-Tay R., Hydrodynamics of a compound drop with application to leukocyte modeling, Phys. Fluids, 1998, vol. 10, no.4, pp. 760–774. DOI:10.1063/1.869601 24. Kim D., Lee J., Bose A., Kim I., Lee J., The impact of an oil droplet on an oil layer on water, J. Fluid Mech., 2020, vol. 906. DOI: https://doi.org/10.1017/jfm.2020.791 25. Aisenberg D., Kauzmann W., The structure and properties of water (Oxford Classic texts in the physical sciences), Oxford University Press: Oxford, UK, 2005. 308 p. 26. Chashechkin Yu.D., Packets of capillary and acoustic waves of drop impact, Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2021, vol. 94, no.1, pp. 73–92 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2021-1-73-91 27. Chashechkin Yu.D., Ilinykh A.Y., Delay of cavity formation in the intrusive coalescence of a free falling drop with target fluid, Dokl. Physics, 2021, vol. 66, no.1, pp. 20–25. DOI: 10.1134/S102833582101002X 28. Chashechkin Yu.D., Ilinykh A.Yu., Distribution of the drop substance in the target fluid at the coalescence intrusive mode, Phys.-Chem. Kin. in Gas Dyn., 2022, vol. 23, no.6, pp. 1–18. http://chemphys.edu.ru/issues/2022-23-6/articles/1023 29. Chashechkin Yu.D., Ilinykh A. Y., Intrusive and impact modes of a falling drop coalescence with a target fluid at rest, Axioms, 2023, vol. 12, no.4. pp. 374. https://doi.org/10.3390/axioms12040374 30. Chashechkin Yu. D., Ilinykh A. Yu., Fine structure of the substance distribution pattern of a free – falling drop on the surface and in the thickness of the target fluid in the impact mode of merging, Phys.-Chem. Kin. in Gas Dyn., 2023, vol. 24, no.2, pp.1043 (in Russ.). http://chemphys.edu.ru/issues/2023-24-2/articles/1043 31. Chashechkin Yu. D., Ilinykh A. Yu. Drop decay into individual fibers at the boundary of the contact area with a target fluid, Dokl. Physics, 2021, vol. 66, no.4, pp. 101–105. DOI: 10.1134/S1028335821040078 32. Ersoy N.E., Eslamian M., Capillary surface wave formation and mixing of miscible liquids during droplet impact onto a liquid film, Phys. Fluids, 2019, vol. 31, pp. 012107. https://doi.org/10.1063/1.5064640 33. Il’inykh A.Yu., Chashechkin Yu.D., Mass transfer from a drop in fall into the fluid thickness in the initial stage of the coalescence process, Fluid Dyn., 2023, vol. 58, no.1, pp. 31–44. DOI: 10.1134/S0015462822601607 34. Kuhlman J.M., Hillen N.L., Droplet impact cavity film thickness measurements versus time after drop impact and cavity radius for thin static residual liquid layer thicknesses, Exp. Therm. and Fluid Sci., 2016, vol. 77, pp. 246–256. doi:10.1016/j.expthermflusci.2016.04.020 35. Chashechkin Yu.D., Visualization of the fine perturbation structure of a liquid surface by flows induced by a drop impact, Fluid Dyn., 2019, vol. 54, no.7, pp. 919–926. https://doi.org/10.1134/S0015462819070036 36. Chashechkin Yu. D., Evolution of the fine structure of the matter distribution of a free-falling droplet in mixing liquids, Izv. Atmosph. Ocean. Phys., 2019, vol. 55, no.3, pp. 285–294. DOI: 10.1134/S0001433819020026 37. Hydrophysical complex for modeling hydrodynamic processes in the environment and their impact on underwater technical objects, as well as the distribution of impurities in the ocean and atmosphere, Institute for Problems in Mechanics RAS. Available online: http://ipmnet.ru/uniqequip/gfk (accessed on 15 June 2023).