Modeling the Flow Around a Delta Wing Partially Made of Permeable Material

Mathematical modeling of a supersonic gas flow around a delta wing at M=2 has been carried out. A wing made of a conventional solid material was compared with a wing whose leading edge was made of a porous material with a porosity coefficient of 0.6. The influence of a permeable edge on the flow structure and thermal regime is studied.

delta wing, gas dynamics, computational aerodynamics, porous materials

Volume 24, issue 5, 2023 year

Моделирование обтекания треугольного крыла, частично изготовленного из проницаемого материала

Выполнено математическое моделирование обтекания треугольного крыла сверхзвуковым потоком газа при М=2. Сравнивались крыло, изготовленное из обычного сплошного материала, и крыло, передняя кромка которого выполнена из пористого материала с коэффициентом пористости 0.6. Исследовано влияние проницаемой кромки на структуру течения и тепловой режим.

треугольное крыло, газовая динамика, вычислительная аэродинамика, пористые материалы.

Volume 24, issue 5, 2023 year

1. M.D. Brodetsky, E. Krause, S.B. Nikiforov, A.A. Pavlov, A.M. Kharitonov, A.M. Shevchenko, Development of vortex structures on the leeward side of a delta wing // Applied mechanics and technical physics. 2001. t. 42, no. 2, p. 68-80
2. P.V.Silvestrov, I.A.Kryukov, B.V.Obnosov, Numerical modeling of hypersonic flow around a delta wing // Physico-chemical kinetics in gas dynamics. 2018. T. 19 (1).
3. P.I. Gorenbukh, V.V. Nosov, Combined influence of viscosity and bluntness on the aerodynamic quality of a delta wing in a flow with high supersonic speed // Scientific notes of TsAGI. 1989 T. 20. No. 3. P. 30–36.
4. J.M. Luckring, The discovery and prediction of vortex flow aerodynamics // The Aeronautical Journal, June 2019, Vol 123 No 1264, P. 729-804
5. Kornilov V.I., Boyko A.V., Experimental modeling of air injection into a turbulent boundary layer using an external pressure flow // Journal of Technical Physics. 2016, vol. 86, issue. 10. P. 8-46.
6. Lysenko V.I., Smorodsky B.V., Ermolaev Yu.G., Gaponov S.A., Kosinov A.D., Semenov N.V., Yatskikh A.A. The influence of heavy gas injection into the near-wall layer of a supersonic boundary layer on its transition // Siberian Physical Journal. 2017, vol. 12, no. 1. pp. 50-56.
7. Shiplyuk A.N., Burov E.V., Maslov A.A., Fomin V.M. The influence of porous coatings on the stability of hypersonic boundary layers // Applied Mechanics and Technical Physics (PMTF). 2004, v. 45, no. 2, p. 169-176.
8. Fomin V.M., Zapryagaev V.I., Lokotko A.V., Volkov V.F., Lutsky A.E., Menshov I.S., Maksimov Yu.M., Kirdyashkin A.I. Aerodynamic characteristics of a body of revolution with gas-permeable surface areas // Applied Mechanics and Technical Physics (PMTF). 2010, vol. 51, no. 1, p. 79 – 88.
9. Fomin V.M., Mironov S.G., Serdyuk K.M. Reducing the wave resistance of bodies in a supersonic flow using porous materials // Letters to the Technical Physics. 2009, vol. 35, issue. 3.
10. B.V. Postnikov, K.A. Lomanovich, R.A. Ponomarenko, Impact of gas-permeable materials with variable porosity on separated flow in supersonic flow around a straight step // Thermophysics and Aeromechanics, 2018, Vol. 25, No. 2
11. Menshov I.S., Severin A.V. S3D software package.
12. Baer M.R., Nunziato J.W. A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials // Int. J. Multiphase Flow. 1986. 12, pp. 861-889.
13. Ergun S. Fluid flow through packed columns // Chem. Eng. Prog. 48 1952.
14. Severin A.V., Lutsky A.E., Menshov I.S. Control of high-speed flow in a channel using porous inserts // Matem. modeling. 2022, 34:4, 100–112
15. Computing complexes MVS-Express, K-100 and K-60 IPM RAS.