Using the methods of scientific photo and videography, the geometry of the flow pattern and the distribution of matter of a free-falling liquid drop in a resting target fluid at the initial stage of cavity formation was recorded. The experiments were carried out in the range of parameters of the impact mode of coalescence, when the kinetic energy of the drop exceeds its available potential surface energy (APSE). To register a color image, the flow pattern was simultane-ously illuminated by several sources including matrix LED and fiber-optic sources of constant light. The planning and interpretation of the experiments results were carried out taking into account the properties of the complete solutions of the fluid mechanics fundamental equations system, taking into account the transfer and conversion of energy. The experiments were car-ried out with a single drop of potassium permanganate solution falling into water. In the im-pact mode, the drop begins to lose continuity at the initial contact, when a veil and thin jets are formed, the velocity of which exceeds the drop contact velocity. From the tops of the jets, small droplets are thrown into the air, the size of which grows with time. On the surface of the liquid, the jets leave colored traces that form line and mesh structures. Part of the jets pene-trates through the cavity bottom and forms an intermediate layer. In it, the jets are separated by interfaces of the target fluid. The processes of molecular diffusion equalize the density differ-ence and form an intermediate layer, which is outlined by sharp boundaries, under the cavity.
drop, impact, experiment, fine structure, cavity, substance transfer
Перенос вещества на начальном этапе формирования каверны в импактном режиме слияния свободно падающей капли
Методами научной фото- и видеографии проведена регистрация геометрии картины течения и рас-пределения вещества свободно падающей капли жидкости в покоящейся принимающей жидкости на начальном этапе формирования каверны. Опыты выполнены в диапазоне параметров импактного режима слияния, когда кинетическая энергия капли превышает ее доступную потенциальную по-верхностную энергию (ДППЭ). Для регистрации цветного изображения картина течения одновре-менно освещалась несколькими источниками – матричными светодиодными и волоконнооптиче-скими источниками постоянного света. Планирование и интерпретация результатов опытов проводились с учетом свойств полных решений системы фундаментальных уравнений, механики жидкостей, учитывающих перенос и конверсию энергии. Опыты выполнены с единичной каплей раствора перманганата калия, падающей в воду. В импактном режиме капля начинает терять сплошность при первичном контакте, когда образуется пелена и тонкие струйки, скорость которых превосходит контактную скорость капли. С вершин струек в воздух выбрасываются капельки, раз-меры которых растут со временем. На поверхности жидкости струйки оставляют окрашенные сле-ды, формирующие линейчатые и сетчатые структуры. Часть струек пронизывает дно и стенки ка-верны и образует промежуточный слой. В нем струйки разделены прослойками принимающей жидкости. Процессы молекулярной диффузии выравнивают разность плотностей и формируют под каверной промежуточный слой, очерченный четкими границами.
капля, импакт, эксперимент, тонкая структура, перенос вещества
1. Moghtadernejad S., Lee C., Jadidi M. An introduction of droplet impact dynamics to engineering students // Fluids. 2020. V. 5. pp.107. doi:10.3390/fluids5030107 2. Edgerton H.E., Killian Jr. J.R. Flash. Hale, Cushman and Flint: Boston, USA, 1939. 203 p. 3. Zhang L.V., Toole J., Fezzaa K., Deegan R.D. Splashing from drop impact into a deep pool: multiplicity of jets and the failure of conventional scaling // J. Fluid Mech. 2012. V. 703. pp. 402–413. DOI: https://doi.org/10.1017/jfm.2012.249 4. Lee J.S., Weon B.M., Park S.J., Kim J.T., Pyo J., Fezzaa K., Je J.H. Air evolution during drop impact on liquid pool // Sci. Reports. 2020. V. 10. pp. 5790. https://doi.org/10.1038/s41598-020-62705-5 5. Thoroddsen S.T., Etoh T.G., Takehara K. High-speed imaging of drops and bubbles // Ann. Rev. of Fluid Mech. 2008. V. 40(1). pp. 257–285. DOI: 10.1146/annurev.fluid.40.111406.102215 6. Li E.Q., Thoraval M.-J., Marston J.O., Thoroddsen S.T. Early azimuthal instability during drop impact // J. Fluid Mech. 2018. V. 848. pp. 821–835. https://doi.org/10.1017/jfm.2018.383 821 7. Lherm V., Deguen R. Velocity field and cavity dynamics in drop impact experiments // J. of Fluid Mech. 2023. V. 962, A21. doi:10.1017/jfm.2023.297 8. Zhang L.V., Brunet P., Eggers K., Deegan R.D. Wavelength selection in the crown splash // Phys. of Fluids. 2010. V. 22(12). pp. 122105. doi:10.1063/1.3526743 9. Chashechkin, Y.D., Prokhorov, V.E. Drop-impact hydrodynamics: Short waves on a surface of the crown // Dokl. Phys. V. 58. Pp 296–300 (2013). DOI: 10.1134/S1028335813070021 10. Chashechkin Y., Ilinykh A. Distribution of the Drop Substance in the Target Fluid at the Coalescence Intrusive Mode // Physical-Chemical Kinetics in Gas Dynamics. 2022. V.23, iss. 6. http://chemphys.edu.ru/issues/2022-23-6/articles/1023/ 11. Chashechkin Y., Ilinykh A. Fine Structure of the Substance Distribution Pat-tern of a Free – Falling Drop on the Surface and in the Thickness of the Target Fluid in the Impact Mode of Merging // Physical-Chemical Kinetics in Gas Dynamics. 2023. V.24, iss. 2. http://chemphys.edu.ru/issues/2023-24-2/articles/1043/ 12. Batchelor G.K «An Introduction to Fluid Dynamics» (In Russian) 1973. 760 p. 13. Okabe J., Inoue S. The generation of vortex rings // II. Rep. Res. Inst. Appl. Mech., Kyushu University. 1961. V. 9. pp. 147–161. 14. Chashechkin Yu.D., Ilinykh A. Y. Intrusive and impact modes of a falling drop coalescence with a target fluid at rest // Axioms. 2023. V. 12(4). pp. 374. https://doi.org/10.3390/axioms12040374. 15. Li E.Q., Thoraval M.-J., Marston J.O., Thoroddsen S.T. Early azimuthal instability during drop impact // J. Fluid Mech. 2018. V. 848. pp. 821–835. https://doi.org/10.1017/jfm.2018.383 821 16. Chashechkin Y. D., Ilinykh A. Y. Banded structures in the distribution pattern of a drop over the surface of the target fluid // Doklady Physics. 2018. V. 63, no. 7. P. 282–287. DOI: 10.1134/S1028335818070066 17. Ersoy N.E., Eslamian M. Capillary surface wave formation and mixing of miscible liquids during droplet impact onto a liquid film // Phys. Fluids. 2019. V. 31. pp. 012107. https://doi.org/10.1063/1.5064640 18. Ray B., Biswas G, Sharma A. Regimes during liquid drop impact on a liquid pool // J. of Fluid Mech. 2015. V. 768. pp. 492–523. doi:10.1017/jfm.2015.108 19. Berberovic E., Van Hinsberg N. P., Jakirlic S., Roisman I. V., Tropea C. Drop impact onto a liquid layer of finite thickness: dynamics of the cavity evolution // Phys. Rev. 2009. V.79(3). 036306. DOI: 10.1103/PhysRevE.79.036306 20. Castrejón-Pita A. A., Castrejón-Pita J. R., Hutchings I. M. Experimental observation of von Kármán vortices during drop impact // Phys. Rev. 2012. V. 86(4). pp. 045301. doi:10.1103/physreve.86.045301 21. Kuhlman J.M., Hillen N.L. Droplet impact cavity film thickness measurements versus time after drop impact and cavity radius for thin static residual liquid layer thicknesses // Exp. Therm. and Fluid Sci. 2016. V. 77. pp. 246–256. doi:10.1016/j.expthermflusci.2016.04.020 22. Chashechkin Y.D. Foundations of engineering mathematics applied for fluid flows // Axioms. 2021. V. 10. pp. 286. https://doi.org/10.3390/axioms10040286 23. Gibbs J.W. Elementary principles in statistical mechanics // Scribner's and sons: New York, US, 1902. 207 p. 24. Landau L D, Lifshitz E M Fluid Mechanics. Oxford: Pergamon Press, 1987 25. Muller P. The equations of oceanic motions. Cambridge: CUP. 2006. 292 p. 26. Feistel R. Thermodynamic properties of seawater, ice and humid air: TEOS-10, before and beyond // Ocean Sci. 2018. V.14. pp. 471–502. https://doi.org/10.5194/os-14-471-2018 27. Harvey A. H, Hrubý J., Meier K. Improved and always improving: reference formulations for thermophysical properties of water // J. of Phys. and Chem. Ref. Data. 2023. V.52. pp. 011501. DOI: 10.1063/5.0125524 28. Nayfeh A.H. Introduction to Perturbation Techniques. John Wiley & Sons: New York, USA, 2011. 533 p. 29. Chashechkin Yu.D. Singularly perturbed components of flows – linear precursors of shock waves // Math. Model. Nat. Phenom. 2018. V. 13(2). pp. 1–29. https://doi.org/10.1051/mmnp/2018020 30. Chashechkin Yu.D., Ochirov A.A. Periodic waves and ligaments on the surface of a viscous exponentially stratified fluid in a uniform gravity field // Axioms. 2022. V. 11(8). pp. 402. doi: 10.3390/axioms11080402 31. Chashechkin, Y.D., Kistovich, A.V. Classification of three-dimensional periodic fluid flows // Dokl. Phys. 2004. V. 49. Pp. 183–186. DOI: 10.1134/1.1710686 32. Chashechkin Yu.D. Conventional partial and new complete solutions of the fundamental equations of fluid mechanics in the problem of periodic internal waves with accompanying ligaments generation // Mathematics. 2021. V. 9(6). pp. 586. https://doi.org/10.3390/math9060586 33. Eisenberg D., Kauzmann W. The Structure and Properties of Water. London: Oxford University Press. 1969 Pp. xii + 231. 34. Ilinykh A. Y., Chashechkin Y. D. Mass transfer from a drop in fall into the fluid thickness in the initial stage of the coalescence process // Fluid Dynamics. 2023. V. 58, no. 1. P. 31–44. DOI: 10.1134/S0015462822601607 35. Malenkov G. G. Structure and dynamics of surfaces of thin films and water microdroplets // Colloid J. 2010. V. 72(5). pp. 649–659. DOI: 10.1134/S1061933X1005011X 36. Hydrophysical complex for modeling hydrodynamic processes in the environment and their impact on underwater technical objects, as well as the distribution of impurities in the ocean and atmosphere, Institute for Problems in Mechanics RAS. Available online: http://ipmnet.ru/uniqequip/gfk (accessed on 2 August 2023) 37. Chashechkin Y. D., Ilinykh A. Y. Formation of a system of inclined loops in the flow of a drop impact // Doklady Physics. 2021. V. 66, no. 8. P. 234–242. DOI: 10.1134/S1028335821080036 DOI: 10.31857/S2686740021040052. 38. Chashechkin Y. D. Evolution of the fine structure of the matter distribution of a free-falling droplet in mixing liquids // Izvestiya - Atmospheric and Oceanic Physics. 2019. V. 55, no. 3. P. 285–294. DOI: 10.1134/S0001433819020026 39. Chashechkin Y. D., Ilinykh A. Y. Drop decay into individual fibers at the boundary of the contact area with the target fluid // Doklady Physics. — 2021. — Vol. 66, no. 4. — P. 101–105. DOI: 10.1134/S1028335821040078 40. Chashechkin Y. D., Ilinykh A. Y. Multiple emissions of splashes upon drop impact // Doklady Physics. 2020. V. 65, no. 10. P. 366–370. DOI: 10.1134/s1028335820100067 41. Chashechkin Yu. D. Oscillations and short waves on a free falling drop surface (Experiment and Theory) // Proceedings Topical Problems of Fluid Mechanics 2019, Prague, February 20-22, 2019. pp. 45–52. https://doi.org/10.14311/TPFM.2019.007 42. Thoroddsen S. T, Etoh T. G., Takehara K. Air entrapment under an impacting drop // J. Fluid Mech. 2003. V. 478. pp. 125–134. DOI: 10.1017/S0022112002003427 43. Zhu G. Z. Li Z. H., Fu D. Y. Experiments on ring wave packet generated by water drop // Chinese Sci. Bull. 2008. V. 53(11). pp. 1634–1638. DOI: 10.1007/s11434-008-0246-0 44. Brackbill J.U., Kothe D.B., Zemach C. A new method for modeling surface tension effects on fluid // J. of Comp. Phys. 1992. V. 100(2). pp. 335–354. https://doi.org/10.1016/0021-9991(92)90240-Y 45. Chashechkin Y. D., Ilinykh A. Y. Capillary waves on the surface of a droplet falling into a liquid (vol 60, pg 548, 2015) // Doklady Physics. 2016. V. 61, no. 2. P. 102–102. DOI: 10.1134/S1028335816550012