Study of microwave discharges in air on the basis of extended fluid-dynamic model




The present study is devoted to modeling a high-frequency plasma discharge in air based on an extended fluid-dynamic model. The aim of the work is to study the influence of various physico-chemical processes on the gas parameters. A numerical model was de-veloped for propagation of electro-magnetic waves through the mixture of nitrogen and oxygen in a microwave plasma reactor, in which a discharge occurs due to microwave radiation with a frequency of 2.45 GHz. The model is based on a reduced set of plasma chemical reactions, which includes ionization of atoms and molecules of nitrogen and oxygen, excitation of electronic degrees of freedom, dissociation of molecules, their re-combination and other chemical reactions that occur in plasma. Modeling was performed for two pressure values: 150 Torr and 760 Torr. Distribution fields of plasma parameters such as electron density, gas temperature, and heating source power for each mechanism are obtained. Results are analyzed and conclusions are drawn about the influence of pressure and fast heating mechanisms on plasma parameters. It is shown that nitrogen dissociation and elastic collisions of electrons with molecules make the most important contribution to the gas heating; on the opposite, reactions involving nitrogen molecule electronic states weakly affect the heating.

microwave plasma, fluid-dynamic model, CFD, fast gas heating

Исследование СВЧ разряда в воздухе на основе расширенной гидродинамической модели

В работе представлена самосогласованная физико-математическая модель, описы-вающая СВЧ-разряд на поверхностной волне с частотой 2.45 ГГЦ в потоке воздуха (смеси кислорода и азота). Модель основана на расширенном гидродинамическом описании плазмы и включает в себя достаточно подробный набор элементарных процессов, в который входят ионизация атомов и молекул азота и кислорода, воз-буждение электронных степеней свободы, диссоциация молекул, их рекомбинация и другие плазмохимические реакции. Расчёт был произведён для двух значений давления: 150 Торр и 760 Торр. Получены основные параметры СВЧ-разряда: кон-центрация электронов, температура газа, мощности источников нагрева для каждо-го механизма. На основе анализа полученных результатов были сделаны выводы о влиянии давления и механизмов быстрого нагрева на параметры плазмы. Показан существенный вклад диссоциации молекул азота и упругих соударений электронов с молекулами в общий нагрев газа и слабое влияние на нагрев реакций с изменени-ем электронных состояний молекулы азота.

СВЧ-плазма, гидродинамическая модель, численное моделирование, быстрый нагрев


1. Sankaran, R.M. (Ed.). (2012). Plasma Processing of Nanomaterials (1st ed.). CRC Press. https://doi.org/10.1201/b11473
2. Lebedev, Y.A., Averin, K.A., Borisov, R.S. et al. Microwave Discharge in Liquid Hydrocar-bons: Study of a Liquid Hydrocarbon after Exciting the Discharge. High Energy Chem 52, 324–329 (2018). https://doi.org/10.1134/S0018143918040100
3. Mariotti, Davide & Sankaran, R.. (2010). Microplasmas for nanomaterials synthesis. J. Phys. D: Appl. Phys. J. Phys. D: Appl. Phys. 43. 241-323001. 10.1088/0022-3727/43/32/323001.
4. Wang, Xiaoyan & Zhou, Minghua & Jin, Xl. (2012). Application of glow discharge plasma for wastewater treatment. Electrochimica Acta. 83. 501–512. 10.1016/j.electacta.2012.06.131.
5. Brovkin V.G., Kolesnichenko Y.F., Leonov S.B., Klimov A.I., Krylov A.A., and Ryvkin M.I. 30th AIAA plasmadynamics and Lasers Conference Study of Microwawe Plasma-Body Inter-action in Supersonic AirFlow. Norfolk, Virginia. 1999. Vol. AIAA 99-3740.
6. Lashkov V., Mashek I., Ivanov V., Kolesnichenko Y., and Rivkin M., Gas-dynamic peculiari-ties of microwave discharge interaction with shock wave near the body AIAA Paper. No. 2008-1410, 2008
7. Knight, Doyle & Kolesnichenko, Yuri & Brovkin, Vadim & Lashkov, Valeriy & Mashek, Igor. (2010). Interaction of Microwave-Generated Plasma with Hemisphere-Cone-Cylinder. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposi-tion. 10.2514/6.2010-1005.
8. V. A. Lashkov, A. G. Karpenko, R. S. Khoronzhuk, I. Ch. Mashek; Effect of Mach number on the efficiency of microwave energy deposition in supersonic flow. Physics of Plasmas 1 May 2016; 23 (5): 052305. https://doi.org/10.1063/1.4949524
9. Andrade, Francisco & Shelley, Jacob & Wetzel, William & Webb, Michael & Gamez, Gerardo & Ray, Steven & Hieftje, Gary. (2008). Atmospheric Pressure Chemical Ionization Source. 1. Ionization of Compounds in the Gas Phase. Analytical chemistry. 80. 2646-53. 10.1021/ac800156y.
10. Schwartz, Andrew & Williams, Kelsey & Hieftje, Gary & Shelley, Jacob. (2016). Atmospheric-pressure solution-cathode glow discharge: A versatile ion source for atomic and molecular mass spectrometry. Analytica Chimica Acta. 950. 10.1016/j.aca.2016.10.045.
11. MacDonald, A. D. (1966). Microwave breakdown in gases. New York : Wiley.
12. Ju. P. Rajzer (2009) Physics of gas discharge. Dolgoprudnyj : Intellekt, 2009 ISBN 978-5-91559-019-8
13. Surzhikov S. T. Comparative analysis of parameters of normal and abnormal glow DC dis-charges. Plasma Physica Reports, 2022, Vol. 48, № 11, 1102-1114.
14. Surzhikov S. T. at al. Normal glow discharge: comparison of numerical and experimental data, Doklady Akademii nauk, 2019, Vol. 485, № 4, 422-427.
15. Surzhikov S. T. Two-dimensional model of the Penning discharge in a cylindrical chamber with the axial magnetic field Technical Physics. 2017. Vol. 62. no. 8. 1177-1188.
16. Mokrov M. S., Raizer Y. P. 3D simulation of hexagonal current pattern formation in a dc-driven gas discharge gap with a semiconductor cathode, Plasma Sources Science and Technol-ogy, 2018, Vol. 27, no. 6. – P. 065008.
17. Saifutdinov, A.I., Kustova, E.V., Journal of Applied Physics, 2012, V. 129, № 023301, P.1-15.
18. Saifutdinov A.I., Kustova E.V., Karpenko A.G., and Lashkov V.A., Plasma Physics Reports, 2019, V. 45, № 6, Р. 602-609
19. K. Kourtzanidis, J. P. Boeuf, F. Rogier; Three dimensional simulations of pattern formation during high-pressure, freely localized microwave breakdown in air. Physics of Plasmas 1 De-cember 2014; 21 (12): 123513. https://doi.org/10.1063/1.4905071
20. Baeva M., Pott A., and Uhlenbusch J., Modelling of NOx removal by a pulsed microwave dis-charge, Plasma Sources Sci. Technol. 11, 135–141 (2002).
21. Kossyi, I.A. & Kostinskiy, Alexander & Matveev, A.A.. (1992). Kinetical scheme of the non-equilibrium nitrogen-oxygen mixtures. Plasma Sources Science and Technology. 1. 207-220.
22. S.O. Macheret, M.N. Shneider, B. Miles. IEEE Trans. Plasma Sci.,v.30, p. 1301, 2002
23. V.R. Solov'ev, A.M.Konchakov, V.M. Krivcov, N.L. Aleksandrov, Plasma Physics Reports, 2008, Vol. 34, №7, 648-662
24. Y. Sakiyama, D. B Graves, H.-W.Chang, T.Shimizu and G. E Morfill. J. Phys. D: Appl. Phys. 45 (2012) 425201 (19pp)
25. M.N.Shneider, A.M.Zhelticov, R.B.Miles, Physics of Plasmas 18, 063509 (2011). J. Phys. D: Appl. Phys. 30 (1997) 1616–1624
26. N L Aleksandrov, E M Bazelyan, I V Kochetov and N A Dyatko. J. Phys. D: Appl. Phys. 30 (1997) 1616–1624
27. M. S. Bak and M. A. Cappelli, "A Reduced Set of Air Plasma Reactions for Nanosecond Pulsed Plasmas," in IEEE Transactions on Plasma Science, vol. 43, no. 4, pp. 995-1001, April 2015, doi: 10.1109/TPS.2015.2409300.
28. Scattering Cross Sections, Plasma Data Exchange Project, available at http://www.lxcat.net (ac-cessed at 26.05.2023)
29. Gordillo-Vázquez, F. (2008). Air plasma kinetics under the influence of sprites. Journal of Physics D: Applied Physics. 41. 234016. 10.1088/0022-3727/41/23/234016.
30. Popov, Nikolay. (2011). Fast gas heating in a nitrogen–oxygen discharge plasma: I. Kinetic mechanism. Journal of Physics D: Applied Physics. 44. 285201. 10.1088/0022-3727/44/28/285201.
31. Tatarova, Elena & Dias, F. & Felizardo, Edgar & Henriques, Júlio & Pinheiro, Mario & Fer-reira, C. & Gordiets, B.. (2010). Microwave air plasma source at atmospheric pressure: Exper-iment and theory. Journal of Applied Physics - J APPL PHYS. 108. 3305-123305. 10.1063/1.3525245.