Results of the Use of Algebraic Models of Turbulence in the Framework of the RANS Model of Heating the Surface of a Sharp Plate in a Supersonic Flow




A modified two-dimensional model for heating the surface of a sharp plate based on the Reynolds-averaged Navier  Stokes (RANS) equations together with algebraic turbulence mod-els is presented. An exponential decrease in the velocity vortex function as we move away from the conditions of the boundary layer boundary, an effective turbulent Prandtl number, and a section of a gradual transition from laminar to turbulent flow are introduced into the model. The problem of choosing the boundary of a turbulent boundary layer when solving the problem using the RANS model is discussed. The intensity of convective heating of flat sur-faces with length L = 40 ÷ 200 cm is compared at M ~ 6 ÷ 9.

algebraic models of turbulence, RANS model, supersonic flow past a sharp plate


Volume 24, issue 3, 2023 year


Результаты использования алгебраических моделей турбулентности в рамках RANS модели нагрева поверхности острой пластины в сверхзвуковом потоке

Представлена модифицированная двухмерная модель нагрева поверхности острой пла-стины, основанная на усредненных по Рейнольдсу уравнениях Навье  Стокса (RANS) совместно с алгебраическими моделями турбулентности. В модель введено экспоненци-альное уменьшение функции вихря скорости по мере отхода от условий границы погра-ничного слоя, эффективное турбулентное число Прандтля и участок постепенного пере-хода от ламинарного к турбулентному течению. Обсуждается проблема выбора границы турбулентного пограничного слоя при решении задачи с использованием RANS-модели. Выполнено сравнение интенсивности конвективного нагрева плоских поверхностей про-тяженностью L = 40 ÷ 200 см при M ~ 6 ÷ 9.

алгебраические модели турбулентности, RANS модель, сверхзвуковое обтекание острой пластины


Volume 24, issue 3, 2023 year



1. James C. S., Observations of Turbulent-burst Geometry and Growth in Supersonic Flow. NASA TN-4235.1958. 85 p.
2. Van-Dyke М., An album of fluid motion, М.: Mir, 1986, 180 p. [in Russian].
3. Dilley A. D., Evaluation of CFD Turbulent Prediction Techniques and Comparison with Hypersonic Experimental Data. NASA/CR2001210837. 2001. 26 p
4. Surzhikov S. T., Turbulent Heat Exchange on the Surface of a Sharp Plate at a Supersonic Flow at
M = 6 ÷ 8, Physical-Chemical Kinetics in Gas Dynamics, 2019, vol. 20, iss. 4. [in Russian]. http://doi.org/10.33257/PhChGD.20.4.890
5. Schlichting H., Boundary-Layer Theory, Springer-Verlag Berlin Heidelberg, 2017, 805 p.
6. Lunev V. V., Flow of real gases with large supersonic velocities, М.: Fizmatlit, 2007, 760 p. [in Russian].
7. Lapin Yu. V., Turbulent boundary layer in supersonic gas flows, М.: «Nauka», Fizmatlit editorial board, 1982, 312 p. [in Russian].
8. Ginzburg I. P., Theory of resistance and heat transfer, L.: Izd-vo Leningradskogo universiteta, 1979, 375 p. [in Russian].
9. Zemljanskij B. A., Lunev V. V., Vlasov V. I., Convective heat transfer of aircrafts, M.: Fizmatlit, 2014, 330 p.
10. Kutateladze S. S., Leontiev A. I., Turbulent boundary layer of compressible gas, Novosibirsk, SО АN SSSR, 1962. [in Russian].
11. Baldwin B. S., Lomax H., Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows, AIAA Paper 780257. https://doi.org/10.2514/6.1978-257
12. Visbal M., Knight D., The Baldwin − Lomax Turbulence Model for Two-Dimensional Shock-Wave/ Boundary  Layer Interaction, AIAA Journal, 1984, vol. 22, no. 7, pp. 921−928.
https://doi.org/10.2514/3.48528
13. Tannehill J. C., Anderson D. A., Pletcher R. H., Computational Fluid Mechanics and Heat Transfer, Taylor&Francis, 1997, 792 p.
14. Cebeci T., Bradshaw P., Physical and Computational Aspects of Connective Heat Transfer, Springer Verlag, 2012, 486 p.
15. Wilcox D. C., Turbulence modeling for CFD, DCW Industries, Inc., 2006, 515 p.
16. Shirazi S. A., Truman C. R., Comparison of Algebraic Turbulence Model for PNS Predictions of Su-perSonic Flow Past a Sphere-Cone. AIAA Paper 87-0544. https://doi.org/10.2514/6.1987-544
17. Shang J. S., Scherr S. J., Navier − Stockes Solution for a Complete Re-Entry Configuration, J. Aircraft, 1986, vol. 23, no. 12, pp 881888.
18. Bertram M. H., Cary Jr., A. M., Whitehead Jr. A. H., Experiments with Hypersonic Turbulent Boundary Layers on Flat Plate and Delta Wings, AGARD Specialists’ Meeting on Hypersonic Boundary Layers and Flow Fields. London. England. May 1968.
19. Bertram M. H., Neal Jr. L., Recent Experiments in Hypersonic Turbulent Boundary Layer. AGARD Specialists’ Meeting on Recent Developments in Boundary Layer Research. Italy, 1965.
20. Wallace J. E., Hypersonic Turbulent Boundary Layer Studies at Cold Wall Conditions, Proc/ of the 1967 Heat Transfer and Fluid Mechanics Institute, Stanford University Press, 1967, pp. 427451.