ADSORPTION OF OXYGEN AND NITROGEN ATOMS ON THE SIO2 SURFACE: MOLECULAR DYNAMICS CALCULATION BASED ON QUANTUM MECHANICAL POTENTIALS




The processes of adsorption of N and O atoms on the surfaces of the thermal protection mate-rial SiO2 were studied by the methods of quantum mechanics and molecular dynamics. The calculation of the potential energy surface (PES) was carried out by the method of the electron density functional theory. Based on the obtained PES, the rate constants of adsorption of N and O atoms were determined by molecular dynamics methods in a wide range of surface tempera-tures of 500–2200 K and presented in the form of a generalized Arrhenius formula. The calcu-lated rate constants have been compared with the known phenomenological models and the re-sults of calculations based on the transition state theory.

adsorption, heat-shielding material SiO2, quantum mechanics, DFT method, dynamics of molecular reactions


Volume 24, issue 3, 2023 year


Адсорбция атомов кислорода и азота на поверхности SiO2: молекулярно-динамический расчет на основе квантово-механических потенциалов

В работе исследовались процессы адсорбции атомов N и O на поверхностях теплоза-щитного материала SiO2 методами квантовой механики и молекулярной динамики. Рас-чет поверхности потенциальной энергии (ППЭ) проводился методом теории функцио-нала электронной плотности. На основе полученных ППЭ методами молекулярной динамики были определены константы скорости адсорбции атомов N, O в широком диапазоне температур поверхности 500-2200 K и представлены в виде обобщенной формулы Аррениуса. Проведено сравнение рассчитанных констант скоростей с извест-ными феноменологическими моделями и результатами расчетов по теории переходного состояния.

адсорбция, теплозащитный материал SiO2, квантовая механика, метод DFT, динамика молекулярных реакций


Volume 24, issue 3, 2023 year



1. Hirschel E.H. Basics of Aerothermodynamics, Springer Berlin Heidelberg, Heidelberg, 2005.
2. Kovalev V.L. Heterogeneous catalytic processes in aerothermodynamics. M.: FIZMATLIT, 2002, 224 p.
3. Kovalev V. L., Kolesnikov A. F. Experimental and theoretical simulation of heterogeneous catalysis in aerothermochemistry // Fluid Dynamics. 2005. V. 40, No. 5. pp. 669–693.
4. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A.J. Montgomery, J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J. V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Gaussian, Inc., Wallingford CT. (2009).
5. Clark T. A Handbook of Computational Chemistry. New York: Wiley-Interscience, 1985. 352 p.
6. Kovalev V.L., Pogosbekyan M.Y. Simulation of heterogeneous atom recombination on spacecraft heat shield coatings using the methods of molecular dynamics // Fluid Dynamics. 2007. V. 42. No. 4. pp. 666–672. http://dx.doi.org/10.1134/S0015462807040163
7. Kovalev V.L., Krupnov A.A., Pogosbekian M.J., Sukhanov L.P. Analysis of heterogeneous recombination of oxygen atoms on aluminum oxide by methods of quantum mechanics and classical dynamics // Acta Astronautica. 2011. V. 68, No. 7-8. pp. 686–690. http://dx.doi.org/10.1016/j.actaastro.2010.10.011
8. Deutschmann O., Riedel U., Warnatz J. // ASME J. of Heat Transf. 1995. V. 117. P. 495. https://doi.org/10.1115/1.2822549.
9. Kurotaki T. Construction of catalytic model on SiO2-based surfaces and application to real trajectory // AIAA Paper. No. 2000-2366. https://doi.org/10.2514/6.2000-2366
10. Nasuti F., Barbato M., Bruno C. Material-dependent catalytic recombination modeling for hypersonic flows // J. Thermophys. Heat Transf. 1996. V. 10. No. 1. pp. 131-136. https://doi.org/10.2514/3.763
11. Kroupnov A.A., Pogosbekian M.J. Interaction of dissociated air with the surface of β-cristobalite material // Acta Astronautica. 2023. V. 203. No. 2. pp. 454–468. http://dx.doi.org/10.1016/j.actaastro.2022.12.027