The article is devoted to a review of experimental methods for determining the thermophysical properties of solids, such as heat capacity, thermal conductivity and thermal diffusivity. According to the type of heat load applied to the sample of the studied material, the known methods are divided into stationary and pulsed. The evolution and historical significance of such methods is briefly described.
Экспериментальные методы определения теплофизических свойств: от однородных твердых тел до высокотемпературных композитных материалов
Статья посвящена обзору экспериментальных методов определения теплофизических свойств твердых тел, таких как теплоемкость, теплопроводность и температуропроводность. По типу подачи тепловой нагрузки на образец исследуемого материала известные методы разделены на стационарные и импульсные. Кратко отображена эволюция и историческая значимость таких методов.
теплоемкость, теплопроводность, теплофизические свойства, высокотемпературные материалы
Livshits B.G. Fizicheskiye svoystva metallov i splavov. M.: Mashgiz, 1959. 352 s. Ye.P. Simonenko, N.P. Simonenko, V.G. Sevast'yanov, N.T. Kuznetsov. Ul'travysokotemperaturnyye keramicheskiye materialy: sovremennyye problemy i tendentsii // M.: IONKH RAN, 2020, 324 s. Figurovskiy N. A. Ocherk obshchey istorii khimii. Ot drevneyshikh vremon do nachala XIX veka. — M.: Nauka, 1969. — S. 414 Kikoin A.K. Temperatura. Teplota. Teployemkost' (Iz istorii fiziki) //Kvant. — 1983. — № 11. — S. 26-28. Figurovskiy N. A. Ocherk obshchey istorii khimii: ot drevneyshikh vremen do nachala XIX v. – Nauka, 1969. Bacon, Francis. Novum organum. Clarendon press, 1878. (english translation of Latin 1620) Khramov YU. A. Fiziki : Biograficheskiy spravochnik / Pod red. A. I. Akhiyezera. — Izd. 2-ye, ispr. i dop. — M. : Nauka, 1983. — S. 63. — 400 s. Lavoisier AL, de Laplace PS. Mémoire sur la chaleur. Mémoires de l’Académie royale des sciences, 1780, pp. 355- 408 Joule, James P. "XXXI. On the existence of an equivalent relation between heat and the ordinary forms of mechanical power: To the editors of the Philosophical Magazine and Journal." The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 27.179 (1845): 205-207. W.J. Parker; R.J. Jenkins; C.P. Butler; G.L. Abbott (1961). "Method of Determining Thermal Diffusivity, Heat Capacity and Thermal Conductivity". Journal of Applied Physics. 32 (9): 1679 Breathnach C. S. Joseph Black (1728–1799): an early adept in quantification and interpretation //Journal of Medical Biography. – 2000. – T. 8. – №. 3. – S. 149-155. Bandinelli A. The Isolated System of Quantifiable Experiences in the 1783" Mémoire sur la chaleur" of Lavoisier and Laplace //Ambix. – 2007. – T. 54. – №. 3. – S. 274-284. Fuks G. i dr. Biografii velikikh khimikov. – 1981. Khemminger V., Khone G. Kalorimetriya. Teoriya i praktika. — M.: Khimiya, 1984. Pouillet C. S. M. Memoire sur le chaleur solaire //Paris. – 1838. https://studfile.net/preview/9400475/ data obrashcheniya 09.02.2023 Fredrickson D. R. et al. A drop calorimeter with an electron beam heated furnace //Review of Scientific Instruments. – 1969. – T. 40. – №. 8. – S. 1022-1025. Eucken A. Über die temperaturabhängigkeit der wärmeleitfähigkeit fester nichtmetalle //Annalen der Physik. – 1911. – T. 339. – №. 2. – S. 185-221. Krauß F. Die Messung der spezifischen Wärme von Metallen bei hohen Temperaturen //International Journal of Materials Research. – 1958. – T. 49. – №. 7. – S. 386-392. Klinghardt H. Messung von wahren spezifischen Wärmen bei hohen Temperaturen durch Heizung mit Glühelektronen. Ann. Phys. 1927;84:167-200. V. A. Kirillin, A. Ye. Sheyndlin, V. YA. Chekhovskoy, V. A. Petrov, “Eksperimental'noye issledovaniye ental'pii vol'frama v intervale temperatur 2400÷2820∘ S”, Dokl. AN SSSR, 144:2 (1962), 390–391. V. A. Kirillin, A. Ye. Sheyndlin, V. YA. Chekhovskoy, “Ental'piya i teployemkost' vol'frama v intervale temperatur 0−2400∘ S”, Dokl. AN SSSR, 142:6 (1962), 1323–1326 V. A. Kirillin, A. Ye. Sheyndlin, V. YA. Chekhovskoy. Teploenergetika, № 2, 63, 1962. Levinson L. S. High Temperature Drop Calorimeter //Review of Scientific Instruments. – 1962. – T. 33. – №. 6. – S. 639-642. S. V. Lebedev, S. E. Khaykin Nekotoryye anomalii v metallakh, nagrevayemykh impul'snym tokom vysokoy plotnosti — ZHETF, 1954, t. 26, №5, s. 629-639. S. V. Lebedev Yavleniya v vol'framovykh provolokakh pered ikh vzryvom pod deystviyem elektricheskogo toka vysokoy plotnosti — ZHETF, 1954, t. 27, №5 s. 605-614. S. V. Lebedev, A. I. Savvatimskiy, Metally v protsesse bystrogo nagrevaniya elektricheskim tokom bol'shoy plotnosti, UFN, 1984, tom 144, nomer 2, 215–250. I. YA. Dikhter, S. V. Lebedev, Teployemkost' vol'frama vblizi tochki plavleniya, TVT, 1970, tom 8, vypusk 1, 55–58 I. YA. Dikhter, S. V. Lebedev, Issledovaniye nekotorykh teplofizicheskikh svoystv vol'frama i molibdena vblizi tochki plavleniya metodom elektricheskogo vzryva, TVT, 1971, tom 9, vypusk 5, 929–933 S. V. Lebedev, “Vozmozhnost' ispol'zovaniya “elektricheskogo vzryva” provolok dlya issledovaniya metallov pri vysokikh temperaturakh”, TVT, 6:1 (1968), 157–159 J.A. Cape; G.W. Lehman (1963). "Temperature and Finite-Pulse-Time Effects in the Flash Method for Measuring Thermal Diffusivity". Journal of Applied Physics. 34 (7): 1909 R.D. Cowan (1963). "Pulse Method of Measuring Thermal Diffusivity at High Temperatures". Journal of Applied Physics. 34 (4): 926. Larson K. B., Koyama K. Correction for finite‐pulse‐time effects in very thin samples using the flash method of measuring thermal diffusivity //Journal of Applied Physics. – 1967. – T. 38. – №. 2. – S. 465-474. Krayev O. A., Stel'makh A. A. Temperaturoprovodnost' vol'frama v intervale temperatur ot 1600 do 2960^∘ C //Teplofizika vysokikh temperatur. – 1963. – T. 1. – №. 1. – S. 8-11. L. P. Filippov, I. N. Makarenko, “Metod izmereniya kompleksa teplovykh kharakteristik metallov pri vysokikh temperaturakh”, TVT, 6:1 (1968), 149–156 N. I. Makarenko, L. N. Trukhanova, L. P. Filippov, Teplovyye svoystva molibdena pri vysokikh temperaturakh, TVT, 1970, tom 8, vypusk 2, 445–447 L. P. Filippov, L. A. Pigal'skaya, Izmereniye temperaturoprovodnosti metallov pri vysokikh temperaturakh. I. Teoriya metoda peremennogo nagreva v vysokochastotnoy pechi, TVT, 1964, tom 2, vypusk 3, 384–391 L. A. Pigal'skaya, L. P. Filippov, “Izmereniye temperaturoprovodnosti metallov pri vysokikh temperaturakh. II. Osushchestvleniye metoda peremennogo nagreva v vysokochastotnoy pechi”, TVT, 2:4 (1964), 558–561. Schick H. L. Thermodynamics of certain refractory compounds //V 1, 1966, 632 P. Kraftmakher YA.A. Teployemkost' pri vysokikh temperaturakh i obrazovaniye vakansiy v tugoplavkikh metallakh // Issledovaniya pri vysokikh temperaturakh / Pod red. Novikova I.I., Strelkova P.G. Novosibirsk: Nauka, 1966. S. 5. I. I. Petrova, V. YA. Chekhovskoy, Opredeleniye istinnoy teployemkosti karbidov tsirkoniya, niobiya i tantala impul'snym metodom, TVT, 1978, tom 16, vypusk 6, 1226–1231 A. S. Bolgar, E. A. Guseva, V. V. Fesenko. Poroshkovaya metallurgiya, № 1, 40, 1967. A. Ye. Sheyndlin, I. S. Belevich, I. G. Kozhevnikov, Issledovaniye ental'pii i teployemkosti materialov na osnove karbida niobiya pri vysokikh temperaturakh, TVT, 1973, tom 11, vypusk 1, 88–92 Navrotsky A. Progress and new directions in calorimetry: A 2014 perspective //Journal of the American Ceramic Society. – 2014. – T. 97. – №. 11. – S. 3349-3359. https://analyzing-testing.netzsch.com/ru data obrashcheniya 09.02.2023 Hayun S., Navrotsky A. Formation enthalpies and heat capacities of rear earth titanates: RE2TiO5 (RE= La, Nd and Gd) //Journal of Solid State Chemistry. – 2012. – T. 187. – S. 70-74. Panneerselvam G. et al. Heat capacity and thermal expansion of samarium titanate //Materials Letters. – 2011. – T. 65. – №. 12. – S. 1778-1780. Panneerselvam G. et al. Thermophysical measurements on dysprosium and gadolinium titanates //Journal of nuclear materials. – 2004. – T. 327. – №. 2-3. – S. 220-225. Kandan R. et al. Calorimetric measurements on rare earth titanates: RE2TiO5 (RE= Sm, Gd and Dy) //Journal of Thermal Analysis and Calorimetry. – 2016. – T. 124. – №. 3. – S. 1349-1355. Nagarajan K, Saha R, Babu R, Mathews CK. Thermodynamic function of barium and strontium zirconates from calorimetric measurements. Thermochim Acta. 1985;90:297–304. Kopan, A.R., Gorbachuk, N.P., Lakiza, S.M. et al. High-Temperature Enthalpy of La2Hf2O7 in the Temperature Range 490–2120 K. Powder Metall Met Ceram 56, 697–706 (2018). Nash P., Meschel S., Gu Q. Two Decades of Calorimetry and Thermal Analysis at the Thermal Processing Technology Centre at Illinois Institute of Technology //Russian Journal of Physical Chemistry A. – 2020. – T. 94. – S. 2624-2639. Rukovodstvo po ekspluatatsii FLASHLINE™ 5000 THERMAL PROPERTIES SYSTEM Manab Mallik, Ansu. J. Kailath, K.K. Ray, R. Mitra Effect of SiC content on electrical, thermal and ablative properties of pressureless sintered ZrB2-based ultrahigh temperature ceramic composites // Journal of the European Ceramic Society 37 (2017) pp. 559–572 Ling Weng, Wenbo Han, Xueying Li, Changqing Hong High temperature thermo-physical properties and thermal shock behavior of metal–diborides-based composites // Int. Journal of Refractory Metals & Hard Materials 28 (2010), pp. 459–465 Wang Z. et al. Microstructure and thermal shock behavior of ZrB2–SiC–graphite composite //Materials Chemistry and Physics. – 2009. – T. 113. – №. 1. – S. 338-341. Luning Zhang, Dugan A. Pejakovic´, and Jochen Marschall Thermal and Electrical Transport Properties of Spark Plasma-Sintered HfB2 and ZrB2 Ceramics // Journal of the American Ceramic Society—Zhang et al. Vol. 94, No. 8, pp. 2562–2570, August 2011. M. M. Opeka, I. G. Talmy, E. J. Wuchina, J. A. Zaykoski, and S. J. Causey, ‘‘Mechanical, Thermal, and Oxidation Properties of Refractory Hafnium and Zirconium Compounds,’’ J. Eur. Ceram. Soc., 19, 2405–14 (1999). A. I. Savvatimskiy, S. V. Onufriyev, A. S. Sedegov, S. N. Yudin, D. O. Moskovskikh, Teplofizicheskiye svoystva vysokoentropiynogo karbida (HfTaTiNbZr)C pri temperaturakh ot 2500 do 5500 K, TVT, 2022, tom 60, vypusk 5, 672–675 S. V. Onufriyev, A. M. Kondrat'yev, A. I. Savvatimskiy, G. Ye. Val'yano, S. A. Muboyadzhyan, “Issledovaniye vysokotemperaturnykh svoystv nitrida tsirkoniya metodom nagreva impul'som toka”, TVT, 53:3 (2015), 478–480; High Temperature, 53:3 (2015), 455–457 A. I. Savvatimskiy, Teployemkost' i elektrosoprotivleniye metallov Ta i W ot tochki plavleniya do 7000 K pri impul'snom nagreve tokom, TVT, 2021, tom 59, vypusk 5, 686–692 M. Gasch, S. Johnson, and J. Marschall, “Thermal Conductivity Characterization of Hafnium Diboride-Based Ultra-High-Temperature Ceramics,” // Journal of the American Ceramic Society, vol. 91, no. 5, pp. 1423–1432, May 2008. M. M. Opeka, I. G. Talmy, E. J. Wuchina, J. A. Zaykoski, and S. J. Causey, ‘‘Mechanical, Thermal, and Oxidation Properties of Refractory Hafnium and Zirconium Compounds,’’ J. Eur. Ceram. Soc., 19, 2405–14 (1999). R. Loehman, E. Corral, H.-P. Dumm, P. Kotula, and R. Tandon, ‘‘Ultra High Temperature Ceramics for Hypersonic Vehicle Applications’’; SAND2006-2925, Albuquerque, NM, June 2006. M. M. Opeka, I. G. Talmy, E. J. Wuchina, J. A. Zaykoski, and S. J. Causey, ‘‘Mechanical, Thermal, and Oxidation Properties of Refractory Hafnium and Zirconium Compounds,’’ J. Eur. Ceram. Soc., 19, 2405–14 (1999). R. Loehman, E. Corral, H.-P. Dumm, P. Kotula, and R. Tandon, ‘‘Ultra High Temperature Ceramics for Hypersonic Vehicle Applications’’; SAND2006-2925, Albuquerque, NM, June 2006.