Влияние поверхностных химических реакций на высотную аэротермодинамику модельной капсулы



Influence of surface chemical reactions on high-altitude aerothermodynamics of a model capsule

A numerical study of a 3D flow about a generic spacecraft capsule was carried out for conditions corresponding to a flight at an altitude of 100 km. The SMILE++ code based on the Direct Simulation Monte Carlo method was employed in the computations. For the first time in 3D molecular kinetic simulations of high-altitude aerothermodynamics, heterogeneous processes on the surface of the thermal protection system of the capsule are modeled with a detailed multi-stage kinetics. It was demonstrated that even at high flight altitudes, surface recombination not only leads to a significant increase in the heat flux to the surface of the descent vehicle and its temperature, but can also have a noticeable effect on its aerodynamic characteristics, such as pitching moment.

direct simulation Monte Carlo method, surface catalytic reactions, high-altitude aerothermodynamics.

Алексей Сергеевич Литвинцев, Александра Николаевна Молчанова, Павел Валерьевич Ващенков, Александр Владимирович Кашковский, Евгений Александрович Бондарь

Том 24, выпуск 2, 2023 год



Проведено численное исследование трехмерного течения около модельной капсулы космического аппарата для условий, соответствующих полету на высоте 100 км. В вычислениях использован пакет прикладных программ SMILE++, основанный на методе прямого статистического моделирования. Впервые в трехмерных молекулярно-кинетических расчетах высотной аэротермодинамики гетерогенные процессы на поверхности теплозащиты капсулы моделируются на основе детальной многостадийной кинетики. Показано, что даже на больших высотах полета поверхностная рекомбинация не только приводит к существенному увеличению теплового потока к поверхности спускаемого аппарата и её температуры, но и может оказывать заметное влияния на его аэродинамические характеристики, такие как момент тангажа.

Ключевые слова: прямое статистическое моделирование, поверхностные каталитические реакции, высотная аэротермодинамика.

Алексей Сергеевич Литвинцев, Александра Николаевна Молчанова, Павел Валерьевич Ващенков, Александр Владимирович Кашковский, Евгений Александрович Бондарь

Том 24, выпуск 2, 2023 год



Kovalev V.L., Kolesnikov A.F. Experimental and theoretical simulation of heterogeneous catalysis in aerothermochemistry // Fluid Dynamics. 2005. Vol. 40, no. 5. P. 669– 693.
Bird. G.A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, Oxford, 1994.
Molchanova A.N., Kashkovsky A.V., Bondar Ye.A. Surface recombination in the direct simulation Monte Carlo method // Physics of Fluids. 2018. Vol. 30, no. 10. P. 107105(18).
Litvintsev A.S., Molchanova A.N., Bondar Ye.A. NO production on the reentry spacecraft thermal protection system surface in the direct simulation Monte Carlo method // Journal of Physics: Conference Series: XVI All-Russian Seminar with international participation Dynamics of Multiphase Media. 2019. Vol. 1404. P. 012118(6)
Litvintsev A.S., Molchanova A.N., Bondar Ye.A. Effects of heterogeneous NO production on the aerothermodynamics of high-altitude re-entry // AIP Conference Proceedings: XXVII Conference on High-Energy Processes in Condensed Matter. 2020. Vol. 2288. P. 030090(6).
Литвинцев А.С., Молчанова А.Н., Кашковский А.В., Бондарь Е.А. Параллельная реализация детальных поверхностных химических механизмов в методе прямого статистического моделирования // Теплофизика и физическая гидродинамика: VI Всерос. науч. конф. с элементами шк. молодых учёных. 2021. Т. 8. С. 189.
Kashkovsky A.V., Bondar Ye.A., Zhukova G.A. et al. Object-Oriented Software Design of Real Gas Effects for the DSMC Method // 24th Int. Symp. on RGD. 2005. P. 583(8).
Ivanov M.S., Kashkovsky A.V., Vashchenkov P.V., Bondar Ye.A. Parallel Object-Oriented Software System for DSMC Modeling of High-Altitude Aerothermodynamic Problems // 27th Int. Symp. on RGD. Pacific Grove, California : AIP Conf. Proceedings 1333, 2011. P. 211(8).
Moss James, Glass Christopher, Greene Francis. DSMC Simulations of Apollo Capsule
Aerodynamics for Hypersonic Rarefied Conditions. Vol. 3. 2006. 06.
Shevyrin Alexander, Bondar Yevgeniy, Ivanov Mikhail. Analysis of Repeated Collisions in the DSMC Method. // AIP Conference Proceedings. 2005. Vol. 762. P. 565(70).
Ivanov M.S., Rogasinsky S.V. Analysis of the Numerical Techniques of the Direct Simulation Monte Carlo Method in the Rarefied Gas Dynamics // Soviet Journal of Numerical and Analytical Mathematical Modeling. 1988. Vol. 3, no. 6. P. 453(65).
Borgnakke C., Larsen S.P. Statistical collision model for Monte Carlo simulation of polyatomic gas mixture // Journal of Computational Physics. 1975. Vol. 18. P. 405(20).
Gimelshein S., Wysong I., Bondar Ye., Ivanov M. Accuracy analysis of DSMC chemistry models applied to a normal shock wave // 28th Int. Symp. on RGD. —Zaragoza, Spain : AIP Conference Proceedings 1501, 2012. P. 637(44).
Gimelshein N.E., Gimelshein S.F., Levin D.A. Vibrational relaxation rates in the direct simulation Monte Carlo method // Physics of Fluids. 2002. Vol. 14, no. 12. P. 445(5).
Bird G.A. Monte-Carlo simulation in an engineering context // 12th Int. Symp. on RGD. 1981. P. 239(55).
Deutschmann O., Riedel U., Warnatz J. Modeling of nitrogen and oxygen recombination on partial catalytic surfaces // Heat Transfer. 1995. Vol. 117, no. 2. P. 495–501.
Kurotaki T., Ito T., Matsuzaki T. et al. CFD Evaluation of Catalytic Model on SiO2-Based TPS in Arc-Heated Wind Tunnel. // 41st Aerospace Sciences Meeting and Exhibit. 2003.
Alexandra Shumakova, Alexander Shevyrin, Yevgeniy Bondar et al. Effects of surface chemistry on high-altitude aerothermodynamics of space vehicles // 52nd Aerospace Sciences Meeting. https://arc.aiaa.org/doi/abs/10.2514/6.2014-0699.
Молчанова A.Н., Бондарь Е.А., Кашковский А.В., Иванов. М.С. Прямое статистическое моделирование высокоскоростного течения около затупленного тела в смеси с учетом поверхностной рекомбинации. // Вычислительные технологии. 2014. Т. 19, вып. 5. С. 67–84.