О методе оценки интегральных характеристик концептуального ГЛА с интегрированной двигательной установкой



On the method for estimating the integral characteristics of a generic scramjet with an integrated propulsion system

This paper describes the method for estimating the integral characteristics of a generic scramjet with an integrated pro-pulsion system. Calculations of the specific impulse and heat fluxes in the propulsion system for the X-43 and X-51 generic scramjets have been carried out. The results obtained are in good agreement with the estimates of other au-thors, as well as with the known graphs of the dependence of the specific impulse for various types of engines depending on the flight Mach number.

scramjet, specific impulse, combustion


Том 24, выпуск 1, 2023 год



В работе изложена методика оценки интегральных характеристик концептуального ГЛА с интегрированной двигательной установкой. Проведены расчеты удельного импульса и тепловых потоков в двигательной установке для ГЛА X-43 и X-51. Полученные резуль-таты находятся в хорошем соответствии с оценками других авторов, а также с извест-ными графиками зависимости удельного импульса для различных типов двигателей в зависимости от числа Маха полета. и типа используемого топлива.

ГЛА, удельный импульс, горение


Том 24, выпуск 1, 2023 год



1. Heiser W. et al. Hypersonic Airbreathing Propulsion // 5th European Conference for Aerospace Sciences (EUCASS). Washington, DC: American Institute of Aeronautics and Astronautics, Inc., 1994. Vol. 26, № July 2013. 430–436 p.
2. Waltrup P.J. et al. History of ramjet and scramjet propulsion development for U.S. Navy missiles // Johns Hopkins APL Tech. Dig. (Applied Phys. Lab. 1997. Vol. 18, № 2. P. 234–242.
3. Seleznev R.K. History of scramjet propulsion development // J. Phys. Conf. Ser. 2018. Vol. 1009, № 1. P. 012028.
4. Seleznev R.K., Surzhikov S.T., Shang J.S. A review of the scramjet experimental data base // Prog. Aerosp. Sci. Elsevier Ltd, 2019. Vol. 106, № February. P. 43–70.
5. Seleznev R.K. Numerical study of the flow structure in the supersonic inlet-isolator // J. Phys. Conf. Ser. 2018. Vol. 1009. P. 012034.
6. Seleznev R.K. Validation of two-dimensional model by the example of a supersonic inlet-isolator // J. Phys. Conf. Ser. 2018. Vol. 1009. P. 012030.
7. Seleznev R.K. Validation of 3D model by the example of a supersonic inlet-isolator // J. Phys. Conf. Ser. 2018. Vol. 1009. P. 012031.
8. Seleznev R., Surzhikov S. A Quasi-One-Dimensional Analysis of Hydrogen-Fueled Scramjet Combustors // 52nd AIAA/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. P. 1–27.
9. Seleznev R.K. Comparison of Ramjet and Scramjet Modes in the Combustion Chamber of the HIFiRE-2 experiment // Phys. Kinet. Gas Dyn. 2021. Vol. 22, № 4. P. 48–64.
10. Surzhikov S. et al. Unsteady Thermo-Gasdynamic Processes in Scramjet Combustion Chamber with Periodical Input of Cold Air // 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. P. 25.
11. Суржиков С. Т. Моделирование радиационно-конвективного нагрева модельных камер ПВРД на водородном и углеводородном топливе//Физико-химическая кинетика в газовой динамике. 2014. Т.15, вып. 3. http://chemphys.edu.ru/issues/2014-15-3/articles/230/.
12. Seleznev R.K. Comparison of two-dimensional and quasi-one- dimensional scramjet models by the example of VAG experiment // J. Phys. Conf. Ser. 2016. Vol. 755, № 1. P. 011001.
13. Seleznev R., Surzhikov S. Quasi-One-Dimensional and Two-Dimensional Numerical Simulation of Scramjet Combustors // 51st AIAA/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. P. 28.
14. Seleznev R.K. Z.K.A. Квазиодномерное численное моделирование водородо - воздушной смеси в канале ГПВРД // Phys. Kinet. Gas Dyn. 2014. P. 7.
15. Dalle D.J., Torrez S.M., Driscoll J.F. Reduced-Order Modeling of Reacting Supersonic Flows in Scramjet Nozzles. 2010. № July. P. 1–19.
16. Жорник К. А., Селезнев Р. К. Расчет интегральных характеристик силовых установок ПВРД//Физико-химическая кинетика в газовой динамике. 2014. Т.15, вып. 2. http://chemphys.edu.ru/issues/2014-15-2/articles/219/.
17. Xi Z. et al. Control-oriented quasi-one dimensional modeling method for scramjet // Int. J. Turbo Jet Engines. 2021. № 29.
18. Carneiro R. et al. Leading-to-trailing edge theoretical design of a generic scramjet // AIP Adv. 2022. Vol. 12, № 5.
19. Flock A.K., Riehmer J.C., Gülhan A. Axisymmetric scramjet engine design and performance analysis // 20th AIAA Int. Sp. Planes Hypersonic Syst. Technol. Conf. 2015. 2015. № July. P. 1–11.
20. Mölder S., Szpiro E.J. Busemann inlet for hypersonic speeds // J. Spacecr. Rockets. 1966. Vol. 3, № 8. P. 1303–1304.
21. Zhu M., Zhang S., Zheng Y. Conceptual design and optimization of scramjet engines using the exergy method // J. Brazilian Soc. Mech. Sci. Eng. Springer Berlin Heidelberg, 2018. Vol. 40, № 12. P. 1–12.
22. MacDonald, Linda, Zornig, John, and Dekker, Andrew (2015). Hypersonics - From Shock Waves to Scramjets (HYPERS301x). UQx Course Report. St Lucia QLD, Australia: The University of Queensland Institute for Teaching and Learning Innovation. [Electronic resource].
23. Robert D. Zucker O.B. Fundamentals of Gas Dynamics, 3rd Edition // John Wiley & Sons. 2019. Vol. 3. 1–560 p.
24. Hank J., Murphy J., Mutzman R. The X-51A Scramjet Engine Flight Demonstration Program // 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. № May. P. 1–13.
25. McClinton C. et al. Hyper-X program status // 39th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. № c.
26. Zhang D. et al. Thermodynamic analysis on optimum performance of scramjet engine at high Mach numbers // Energy. Elsevier Ltd, 2015. Vol. 90. P. 1046–1054.
27. Lv C. et al. Recent research progress on airbreathing aero-engine control algorithm // Propuls. Power Res. Beihang University, 2022. Vol. 11, № 1. P. 1–57.
28. Суржиков С.Т. Термогазодинамика модельной камеры сгорания этилена в сверхзвуковом потоке // Изв. РАН. МЖГ. 2022. № 3. С. 115-134.
29. Crow A.J., Boyd I.D., Terrapon V.E. Radiation Modeling of a Hydrogen Fueled Scramjet // J. Thermophys. Heat Transf. 2013. Vol. 27, № 1. P. 11–21.
30. Nelson H.F. Radiative heating in scramjet combustors // J. Thermophys. Heat Transf. 1997. Vol. 11, № 1. P. 59–64.