On the method for estimating the integral characteristics of a generic scramjet with an integrated propulsion system
This paper describes the method for estimating the integral characteristics of a generic scramjet with an integrated pro-pulsion system. Calculations of the specific impulse and heat fluxes in the propulsion system for the X-43 and X-51 generic scramjets have been carried out. The results obtained are in good agreement with the estimates of other au-thors, as well as with the known graphs of the dependence of the specific impulse for various types of engines depending on the flight Mach number.
В работе изложена методика оценки интегральных характеристик концептуального ГЛА с интегрированной двигательной установкой. Проведены расчеты удельного импульса и тепловых потоков в двигательной установке для ГЛА X-43 и X-51. Полученные резуль-таты находятся в хорошем соответствии с оценками других авторов, а также с извест-ными графиками зависимости удельного импульса для различных типов двигателей в зависимости от числа Маха полета. и типа используемого топлива.
1. Heiser W. et al. Hypersonic Airbreathing Propulsion // 5th European Conference for Aerospace Sciences (EUCASS). Washington, DC: American Institute of Aeronautics and Astronautics, Inc., 1994. Vol. 26, № July 2013. 430–436 p. 2. Waltrup P.J. et al. History of ramjet and scramjet propulsion development for U.S. Navy missiles // Johns Hopkins APL Tech. Dig. (Applied Phys. Lab. 1997. Vol. 18, № 2. P. 234–242. 3. Seleznev R.K. History of scramjet propulsion development // J. Phys. Conf. Ser. 2018. Vol. 1009, № 1. P. 012028. 4. Seleznev R.K., Surzhikov S.T., Shang J.S. A review of the scramjet experimental data base // Prog. Aerosp. Sci. Elsevier Ltd, 2019. Vol. 106, № February. P. 43–70. 5. Seleznev R.K. Numerical study of the flow structure in the supersonic inlet-isolator // J. Phys. Conf. Ser. 2018. Vol. 1009. P. 012034. 6. Seleznev R.K. Validation of two-dimensional model by the example of a supersonic inlet-isolator // J. Phys. Conf. Ser. 2018. Vol. 1009. P. 012030. 7. Seleznev R.K. Validation of 3D model by the example of a supersonic inlet-isolator // J. Phys. Conf. Ser. 2018. Vol. 1009. P. 012031. 8. Seleznev R., Surzhikov S. A Quasi-One-Dimensional Analysis of Hydrogen-Fueled Scramjet Combustors // 52nd AIAA/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. P. 1–27. 9. Seleznev R.K. Comparison of Ramjet and Scramjet Modes in the Combustion Chamber of the HIFiRE-2 experiment // Phys. Kinet. Gas Dyn. 2021. Vol. 22, № 4. P. 48–64. 10. Surzhikov S. et al. Unsteady Thermo-Gasdynamic Processes in Scramjet Combustion Chamber with Periodical Input of Cold Air // 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. P. 25. 11. Суржиков С. Т. Моделирование радиационно-конвективного нагрева модельных камер ПВРД на водородном и углеводородном топливе//Физико-химическая кинетика в газовой динамике. 2014. Т.15, вып. 3. http://chemphys.edu.ru/issues/2014-15-3/articles/230/. 12. Seleznev R.K. Comparison of two-dimensional and quasi-one- dimensional scramjet models by the example of VAG experiment // J. Phys. Conf. Ser. 2016. Vol. 755, № 1. P. 011001. 13. Seleznev R., Surzhikov S. Quasi-One-Dimensional and Two-Dimensional Numerical Simulation of Scramjet Combustors // 51st AIAA/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. P. 28. 14. Seleznev R.K. Z.K.A. Квазиодномерное численное моделирование водородо - воздушной смеси в канале ГПВРД // Phys. Kinet. Gas Dyn. 2014. P. 7. 15. Dalle D.J., Torrez S.M., Driscoll J.F. Reduced-Order Modeling of Reacting Supersonic Flows in Scramjet Nozzles. 2010. № July. P. 1–19. 16. Жорник К. А., Селезнев Р. К. Расчет интегральных характеристик силовых установок ПВРД//Физико-химическая кинетика в газовой динамике. 2014. Т.15, вып. 2. http://chemphys.edu.ru/issues/2014-15-2/articles/219/. 17. Xi Z. et al. Control-oriented quasi-one dimensional modeling method for scramjet // Int. J. Turbo Jet Engines. 2021. № 29. 18. Carneiro R. et al. Leading-to-trailing edge theoretical design of a generic scramjet // AIP Adv. 2022. Vol. 12, № 5. 19. Flock A.K., Riehmer J.C., Gülhan A. Axisymmetric scramjet engine design and performance analysis // 20th AIAA Int. Sp. Planes Hypersonic Syst. Technol. Conf. 2015. 2015. № July. P. 1–11. 20. Mölder S., Szpiro E.J. Busemann inlet for hypersonic speeds // J. Spacecr. Rockets. 1966. Vol. 3, № 8. P. 1303–1304. 21. Zhu M., Zhang S., Zheng Y. Conceptual design and optimization of scramjet engines using the exergy method // J. Brazilian Soc. Mech. Sci. Eng. Springer Berlin Heidelberg, 2018. Vol. 40, № 12. P. 1–12. 22. MacDonald, Linda, Zornig, John, and Dekker, Andrew (2015). Hypersonics - From Shock Waves to Scramjets (HYPERS301x). UQx Course Report. St Lucia QLD, Australia: The University of Queensland Institute for Teaching and Learning Innovation. [Electronic resource]. 23. Robert D. Zucker O.B. Fundamentals of Gas Dynamics, 3rd Edition // John Wiley & Sons. 2019. Vol. 3. 1–560 p. 24. Hank J., Murphy J., Mutzman R. The X-51A Scramjet Engine Flight Demonstration Program // 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. № May. P. 1–13. 25. McClinton C. et al. Hyper-X program status // 39th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. № c. 26. Zhang D. et al. Thermodynamic analysis on optimum performance of scramjet engine at high Mach numbers // Energy. Elsevier Ltd, 2015. Vol. 90. P. 1046–1054. 27. Lv C. et al. Recent research progress on airbreathing aero-engine control algorithm // Propuls. Power Res. Beihang University, 2022. Vol. 11, № 1. P. 1–57. 28. Суржиков С.Т. Термогазодинамика модельной камеры сгорания этилена в сверхзвуковом потоке // Изв. РАН. МЖГ. 2022. № 3. С. 115-134. 29. Crow A.J., Boyd I.D., Terrapon V.E. Radiation Modeling of a Hydrogen Fueled Scramjet // J. Thermophys. Heat Transf. 2013. Vol. 27, № 1. P. 11–21. 30. Nelson H.F. Radiative heating in scramjet combustors // J. Thermophys. Heat Transf. 1997. Vol. 11, № 1. P. 59–64.