Traditionally, so-called the machine methods are used to increase the total pressure, i.e. various types of compressors are used. The compressors operation principle is based on the supply of mechanical energy to the flow. The paper considers a method of increasing the stagnation pressure, based on the thermal effect on the flow (heat removal). The influence of various factors on the stagnation pressure increasing has been studied for the channel flow in the presence of thermal action only. Various methods of flow cooling are considered. It is shown that evaporative cooling is the most effective methods from the point of view the stagnation pressure increasing. An overview of the evaporative cooling use to increase the stagnation pressure is presented. On the basis of a one-dimensional model of an evaporative cooling device, the possibility of the stagnation pressure increasing by a factor of 1.25 at supersonic inlet velocities is shown.
stagnation pressure, aerothermopressor, energy separation, evaporation, compressible flow
Исследование возможностей повышения давления торможения в высокоскоростном потоке
Традиционно для повышения давления торможения используют, так называемые, машинные методы, т.е. применяют различные компрессоры, принцип работы которых основан на подводе к потоку механической энергии. В работе рассмотрен способ повышения давления торможения, основанный на тепловом воздействии на поток (отвод тепла). Исследовано влияние различных факторов на степень повышения давления торможения при течении в канале при наличии только теплового воз-действия. Рассмотрены различные методы охлаждения потока. Показано, что наиболее эффективным с точки зрения повышения давления торможения является испарительное охлаждение. Приведён обзор работ по использованию испарительного охлаждения для повышения давления торможения. На базе одномерной модели устройства испарительного охлаждения показана возможность повышения давления торможения в 1.25 раза при сверхзвуковых скоростях на входе.
давление торможения, аэротермопрессия, энергоразделение, испарение, сжимаемое течение
1. Leontiev A.I. Doklady Akademii nauk. 1997. vol. 354. pp. 475–477. 2. Khazov D.E. Teplovye processy v tehnike. 2018. vol. 10, no. 1-2. pp. 25–36. 3. Vulis L.A. Termodinamika gazovyh potokov (Thermodynamics of gas flow). Moscow, Len-ingrad, Gosjenergoizdat, 1950. 304 p. 4. Shapiro H. A. The dynamics and thermodynamics of compressible fluid flow. The Ronald Press Company, 1953. Vol. 1. 5. Sergel O.S. Prikladnaja gidrogazodinamika: Uchebnik dlja aviacionnyh vuzov (Applied Fluid Dynamics: Textbook for Aviation Universities). Moscow, Mashinostroenie, 1981. 374 p. 6. Baehr H.D. Tehnicheskaja termodinamika (Technical thermodynamics). Moscow, Mir, 1977. 519 p. 7. Osnovy gazovoi dinamiki (Fundamentals of gas dynamics. Ed. by Emmons G.). Moscow. Iz-datelstvo Inostrannoi literatury, 1963. 698 p. 8. Seiff A. Examination of the existing data of the heat transfer of turbulent boundary layers at supersonic speeds from the point of view of Reynolds analogy. NACA, TN-3284, 1954. 9. Aubrey Jr. M. Cary. Summary of available information on Reynolds analogy for zero-pressure-gradient, compressible, turbulent-boundary-layer flow. NASA, TN D-5560, 1970. 10. Repik E.U., Sosedko Yu.P. Turbulentnyi pogranichnyi sloi. Metodika i rezul'taty eksperi-mental'nykh issledovanii (Turbulent boundary layer. Methodology and results of experi-mental studies). Moscow, FIZMATLIT, 2007. 312 p. 11. Dyban E.P., Epik E.J. Heat transfer in boundary layer in a turbulent air flow. Proc. 6th Int. Heat Transfer Conf. Vol. 2. Toronto, Canada, 1978. P. 507–512. 12. Kestin J. The effect of free-stream turbulence on heat transfer rates. Advances in Heat Trans-fer. 1966. Vol. 3, № 1. P. 1–32. DOI: 10.1016/S0065-2717(08)70049-2 13. Blair M.F. Influence of free-stream turbulence on turbulent boundary layer heat transfer and mean profile development. ASME J. Heat Transfer. 1983. Vol. 105, № 1. P. 33–47. DOI: DOI:10.1115/1.3245557 14. Simonich J.C., Bradshaw P. Effect of free-stream turbulence on heat transfer through a turbu-lent boundary layer. ASME J. Heat Transfer. 1978. Vol. 2, № 4. P. 671–677. DOI:10.1115/1.3450875 15. Pyadishyus A., Shlanchyauskas A. Turbulentnyi perenos v pristennykh techeniyakh (Turbu-lent transport in near-wall flows). Vil'nyus, Mokslas, 1987. 283 p. 16. Adomaitis I.-E.I., Chesna B.A., Vilemas Yu.V. Tr. AN Lit. SSR. 1981. vol. 1 (122). P. 51–69. 17. Mikhailova N.P., Repik E.U., Sosedko Yu.P. Izv. RAN. MZhG. 2000. № 2. P. 61–71. 18. Kiselev N.A. et al. Heat transfer and skin-friction in a turbulent boundary layer under a non-equilibrium longitudinal adverse pressure gradient. International Journal of Heat and Fluid Flow. 2021. Vol. 89. P. 108801. DOI: 10.1016/ j.ijheatfluidflow.2021.108801. 19. Shlihting G. Teoriya pogranichnogo sloya (Boundary layer theory). Moscow, Nauka, 1974. 711 p. 20. Kutateladze S.S., Leont'ev A.I. Teplomassoobmen i trenie v turbulentnom pogranichnom sloe (Heat and Mass Transfer and Friction in a Turbulent Boundary Layer). Moscow, Energoatomizdat, 1985. 320 p. 21. Protsessy tormozheniya sverkhzvukovykh techenii v kanalakh (Deceleration Processes of Su-personic Flows in Channels) O. V. Gus'kov. Moscow, Fizmatlit, 2008. 168 p. 22. Shapiro H. A., Howthorne R. W. The mechanics and thermodynamics of steady, one-dimensional gas flow. J. App. Mech. 1947. Vol. 69. P. 317. 23. Shapiro H. A., Wadleigh K.R. Final summary report of aerothermopressor project: 2-6985. Cambridge, Massachussets: Massachusettes Institute of Technology, 1956. 24. Wadleigh K.R. An experimental investigation of a small-scale aerothermopressor — a device for increasing the stagnation pressure of high-temperature, high-velocity gas stream by evapo-rative cooling: submitted in partial fulfillment of the requirements for the degree of doctor of science. Massachusettes Institute of Technology, 1953. 25. Khazov D.E., Sedlov A.A. Problemy gazodinamiki i teplomassoobmena v energetiche-skikh ustanovkakh: Tezisy dokladov XX shkoly-seminara molodykh uchenykh i spetsiali-stov pod rukovodstvom akad. RAN A. I. Leont'eva (24–29 maya 2015 g., g. Zvenigorod). Mоscоw, Iz-datel'skii dom MEI, 2015. P. 73–74. 26. Fowle A.A. An experimental investigation of an aerothermopressor having a gas flow capaci-ty of 25 pounds per second: submitted in partial fulfillment of the requirements for the de-gree of doctor of philosophy. Massachusettes Institute of Technology, 1955. 27. Erickson A.J. A theoretical and experimental investigation of the aerothermopressor process: submitted in partial fulfillment of the requirements for the degree of doctor of science. Massachusettes Institute of Technology, 1956. 28. MacKay R.T. Experimental investigation of a 2 1/8 in diameter constant-area aerothermo-pressor with supersonic inlet: submitted in partial fulfillment of the requirements for the de-gree of Master of Science in mechanical engineering. Massachusettes Institute of Technology, 1955. 29. Smith I.K. Investigation of increase of total pressure of a hot gas stream by the injection of water: A thesis submitted for the degree of Doctor of Philosophy, in the Faculty of Engineer-ing, University of London. Imperial College London, 1961. 30. Smith I.K. The supersonic aerothermopressor. Proceedings of the Institution of Mechanical Engineers. 1969. Vol. 184, № 1. P. 121–132. DOI:10.1243/PIME_PROC_1969_184_014_02 31. Erofeev V.L. Povyshenie moshchnosti i ekonomichnosti gazosilovoi ustanovki rechnogo sud-na putem ispol'zovaniya termogazodinamicheskogo effekta (Increasing the power and effi-ciency of the gas power plant of a river vessel by using the thermogasdynamic effect). Ph.Doctor’s thesis. Leningrad, 1970. 151 p. 32. Stepanov I.R., Chudinov V.I. Nekotorye zadachi dvizheniya gaza i zhidkosti v kanalakh i truboprovodakh energoustanovok (Some problems of gas and liquid flows in channels and pipelines of power plants). Leningrad, Nauka, 1977. 200 p. 33. Stepanov I.R., Chudinov V.I. Termopressor. A. S. №472209 SSSR. 1975. 77 p. 34. Konovalov D. et al. Experimental research of the excessive water injection effect on re-sistances in the flow part of a low-flow aerothermopressor. Advances in design, simulation and manufacturing III. Cham: Springer International Publishing, 2020. P. 292–301. DOI:10.1007/978-3-030-50491-5_28 35. Shapiro A.H. et al. The aerothermopressor — a device for improving the performance of a gasturbine power plant. Transactions of the American Society of Mechanical Engineers. 1956. Vol. 78, no. 3. P. 617–650. DOI: 10.1115/1.4013756. 36. Khazov D.E. Ogneupory i tekhnicheskaya keramika. 2006. no. 11. p. 39–43. 37. Cao R. et al. New method for solving one-dimensional transonic reacting flows of a scramjet combustor. Journal of Propulsion and Power. 2016. Vol. 32, no. 6. P. 1403–1412. DOI: 10.2514/1.B36056. 38. Bitron M.D. Atomization of liquids by supersonic air jets. Industrial & Engineering Chemis-try. 1955. Vol. 47, no. 1. P. 23–28. DOI: 10.1021/ie50541a019.