Numerical investigation of the pulse jet flow of an inhomogeneous gas-dispersed mixture




The paper presents the results of numerical simulation of the pulse jet flow of a gas-dispersed mixture as a prototype of the jet powder technology of fire extinguishing or pollution neutralization. Two cases of pulsed two-phase jets have been studied: with alternating sections of powder and gas layers inside the discharge cylindrical channel, as well as with its homogeneous initial filling. The time dependences of the gas-dynamic parameters in the outlet section of the ejection channel and spatial numerical Schlieren images of particle concentrations are obtained. The determining mechanism of the jet inhomogeneous flow is hydrodynamic instability with the formation of large-scale vortex structures, which leads to the intensification of mixing processes.

numerical modeling, jet powder technology

Численное исследование импульсного струйного течения неоднородной газодисперсной смеси

В работе представлены результаты численного моделирования импульсного струйного течения газодисперсной смеси, как прототипа струйной порошковой технологии пожаротушения или нейтрализации загрязнений. Изучены два случая импульсных двухфазных струй: с чередованием секций порошка и газовых слоев внутри выбросного цилиндрического канала, а также с его однородным начальным заполнением. Получены зависимости от времени газодинамических параметров в выходном сечении выбросного ка-нала и пространственные численные шлирен-изображения концентраций частиц. Определяющим механизмом струйного неоднородного потока является гидродинамическая неустойчивость с образованием крупномасштабных вихревых структур, что приводит к интенсификации процессов перемешивания.

численное моделирование, струйная порошковая технология


1. Nigmatulin R.I. Dynamics of multiphase media. In 2 Vols. New York, USA, Hemisphere Publ. Corp., 1990.
2. Gidaspow D. Multiphase Flow and Fluidization. Continuum and Kinetic Theory Descriptions. San Diego, USA, Academic Press, 1994. 467 p.
3. Kutushev A.G. Matematicheskoe modelirovanie volnovykh protsessov v aerodispersnykh i poroshkoobraznykh sredakh (Mathematical Modeling of Wave Processes in aero–dispersed and powdered media). St. Petersburg, Nedra Publ., 2003. 284 p.
4. Lyubarskii S.D., Ivanov A.S. “Motion of a compressed two-phase medium of bulk density upon sudden expansion”. Combustion, Explosion, and Shock Waves, Vol. 25, No. 3, 1989, pp. 335–337.
5. Ivandaev A.I., Kutushev A.G., Rudakov D.A. “Numerical investigation of throwing a powder layer by a compressed gas”. Combustion, Explosion, and Shock Waves, Vol. 31, No. 4, 1995, pp. 459–465.
6. Ivanov A.S., Kozlov V.V., Sadin D.V. “Unsteady flow of a two-phase disperse medium from a cy-lindrical channel of finite dimensions into the atmosphere”. Fluid Dynamics, Vol. 31, No. 3, 1996, pp. 386–391.
7. Sadin D.V., Lyubarskii S.D., Gravchenko Y.A. “Features of an underexpanded pulsed impact gas-dispersed jet with a high particle concentration”. Technical Physics, Vol. 62, No. 1, 2017, pp. 18–23.
8. Shirokova E.N. Chislennoe issledovanie razleta smesi gaza i chastits s osevoi simmetriei (A numerical study of the expansion of a gas-particles mixture with axial symmetry). Scientific and Technical Journal of Information Technologies, Mechanics and Optics, Vol. 21, No. 4, 2021, pp. 606–612.
9. Sadin D.V. Modelirovanie impul'snogo istecheniya smesi vozdukha i melkodispersnogo poroshka, chastichno zapolnyayushchego vybrosnoi kanal (Simulation of the pulsed outflow of air and fine powder mixture, partially filling the discharge channel). Scientific and Technical Journal of Information Technologies, Mechanics and Optics, Vol. 22, No. 1, 2022, pp. 187–192.
10. Galitseiskii B.M., Shustrova V.Yu. “Dvukhfaznye turbulentnye struinye techeniya s fazovymi prevrashcheniyami”. Matem. modelirovanie, Vol. 17, No. 7, 2005, pp. 79–93.
11. Sadin D.V., Dobrolyubov A.N., Zyuzlikov V P., Mogilenko K.V., Sinil’shchikov B.E. “Interaction of a gas-droplet turbulent jet with a cocurrent high-velocity high-temperature gas flow”. Journal of Applied Mechanics and Technical Physics, Vol. 49, No. 3, 2008, pp. 417–424.
12. Huilin L., Gidaspow D., Bouillard J., Wentie L. “Hydrodynamic simulation of gas-solid flow in a riser using kinetic theory of granular flow”. Chemical Engineering Journal, Vol. 95, No. 1–3, 2003, pp. 1– 13.
13. Løge I. A., Bentzon J. R., Klingaa C. G., Walther J. H., Anabaraonye B. U., Fosbøl P. L. “Scale at-tachment and detachment: The role of hydrodynamics and surface morphology”. Chemical Engineering Journal, Vol. 430, Part 2, 15 February, 2022, P. 132583.
14. Sadin D.V. Modifikatsiya metoda krupnykh chastits do skhemy vtorogo poryadka tochnosti po prostranstvu i vremeni dlya udarno-volnovykh techenii gazovzvesi (A modification of the large-particle method to a scheme having the second order of accuracy in space and time for shockwave flows in a gas suspension). Bulletin of the South Ural State University, Series: Mathematical Modelling, Pro-gramming and Computer Software, Vol. 12, No. 2, 2019, pp. 112–122.
15. Sadin D.V., Golikov I.O., Davidchuk V.A. “Simulation of a shock wave interaction with a bounded inhomogeneous gas–particle layer using the hybrid large-particle method”. Numerical Methods and Programming, Vol. 22, No. 1, 2021, pp. 1–13.
16. Sadin D.V. “TVD scheme for stiff problems of wave dynamics of heterogeneous media of nonhyperbolic nonconservative type”. Computational Mathematics and Mathematical Physics, Vol. 56, No. 12, 2016, pp. 2068–2078.
17. Quirk J.J. and Karni S. “On the Dynamics of a Shock-Bubble Interaction” J. Fluid Mech, Vol. 318, 1996, pp. 129-163.