Hydrodynamic Characteristics of Single and Multi-Row Heat Exchangers Employing Staggered Drop-Shaped Tubes
In this work, the influence of the number of tube rows and the Reynolds number on the thermal aerodynamic characteristics of staggered drop-shaped tube bundles was analyzed. A similarity equation was developed to describe the aerodynamic drag coefficient f of a drop-shaped tube bundle, taking into account the number of tube rows NR. Drop-shaped tubes were arranged in a staggered pattern and placed in consecutive rows in the direction of flow (from 1 to 20 rows), each of which consists of 7 tubes in the transverse direction. The Reynolds number Re ranged from 1780 to 18720. The results showed that f decreases with increasing Re. Moreover, an increase in NR leads to an increase in the drag coefficient. f increases by about 18.59–21.91 times with an increase in NR from 1 to 20. The maximum error between the numerical results and the similarity equation obtained on their basis was ± 8.18%.
Drop-shaped tube, non-circular tube, number of tube rows, Reynolds number, similarity equation, drag coefficient, numerical study, Fluent.
В данной работе проводится численное исследование влияния числа Рейнольдса Re и количества рядов труб NR на аэродинамические характеристики шахматного пучка труб каплевидной формы. Разработано уравнение подобия для описания коэффициента аэродинамического сопротивления f пучка каплевидных труб с учетом количества рядов труб. Трубы расположены в шахматной компановке и размещены последовательными рядами в направлении потока (от 1 до 20 рядов), каждый из которых состоял из 7 труб в поперечном направлении. Исследование выполнено для диапазона числа Рейнольдса 1780-18720. Было найдено, что f уменьшается с увеличением Re. Более того, увеличение NR приводит к увеличению коэффициента аэродинамического сопротивления. f увеличивается в 18,59 – 21,91 раза при увеличении NR от 1 до 20. Максимальное отклонение между численными результатами и полученными на их основе уравнением подобия составило ±8,18%.
Каплевидная труба, некруглая труба, число рядов труб, число Рейнольдса, корреляция, уравнение подобия, коэффициент аэродинамического сопротивления, теплообменник, численное исследование, Fluent
1. Paul S.S., Ormiston S.J., Tachie M.F., “Experimental and numerical investigation of turbulent cross-flow in a staggered tube bundle,” Int J Heat Fluid Flow, Vol. 29, 2008, Pp.387–414. 2. Murshed S.S., Lopes M.M., “Heat Exchangers: Advanced Features and Applications,” BoD–Books on Demand, 2017. 3. Abd Rabbo M.F. et al., “Numerical investigation of cutting edge effect on fluid flow and heat transfer for in-phase trapezoidal air channels,” Alexand. Eng. J., Vol. 57, 2018, Pp.911–926. 4. TEMA., “Standards of the tubular exchanger manufactures association,” Eighth, 1998. New York 5. Zhukauskas A., “Heat transfer from tubes in cross-flow,” Adv. Heat Transf., Vol. 8, 1972, Pp. 93–160. 6. Fullerton T.L., Anand N.K., “Periodically fully-developed flow and heat transfer over flat and oval tubes using a control volume finite-element method,” Numerical Heat Transfer A: Appl., Vol. 57, 2010, Pp.642–665. 7. Rocha L.A.O., Saboya F.E.M., Vargas J.V.C., “A comparative study of elliptical and circular sections in one- and two-row tubes and plate fin heat exchangers,” Int. J. Heat Fluid Flow, Vol. 18, 1997, Pp.247–252. 8. Ibrahim T.A., Gomma A., “Thermal performance criteria of elliptic tube bundle in cross flow,” Int J Therm Sci, Vol. 48, 2009, Pp.2148–2158. 9. Chamoli S., Tang T., Yu P., Lu R., “Effect of shape modification on heat transfer and drag for fluid flow past a cam-shaped cylinder,” International Journal of Heat and Mass Transfer, Vol. 131, 2019, Pp. 1147-1163. 10. Bayat H., Lavasani A. M., Maarefdoost T., “Experimental study of thermal–hydraulic performance of cam-shaped tube bundle with staggered arrangement,” Energy Conversion and Management, Vol. 85, 2014 106748. 11. Akbari M., Lavasani A. M., Naseri A., “Experimental investigation of the heat transfer for non-circular tubes in a turbulent air cross flow,” Energy Conversion and Management, Vol. 34, iss. 6, 2021, Pp.513–530. 12. Sayed et al.A., “Effect of attack and cone angels on air flow characteristics for staggered wing shaped tubes bundle,” Heat and Mass Transfer, Vol. 51, 2015, Pp.1001–1016. 13. Deeb R., Sidenkov D.V., “Numerical analysis of heat transfer and fluid flow around circular and non-circular tubes,” IOP Conf. Series J. Phys, 2088, 2021, 012008. 14. Дееб Р., “Экспериментальное и численное исследование влияния угла атаки на характеристики воздушного потока при обтекании одиночной каплевидной трубы,” Физико-химическая кинетика в газовой динамике, Т.22, № 2, 2021, С. 53-67. 15. Дееб Р., “Влияние угла атаки на характеристики теплообмена при обтекании одиночной каплевидной трубы,” Физико-химическая кинетика в газовой динамике, Т.22, № 5, 2021, С. 43-63. 16. Дееб Р., Колотвин А.В., Сиденков Д.В., “Оценка моделей турбулентности для моделирования теплообмена и гидродинамики труб каплевидной формы,” Вестник Международной академии холода, T. 83, № 2, 2022, С.61-69. 17. Deeb R., “Numerical analysis of the effect of longitudinal and transverse pitch ratio on the flow and heat transfer of staggered drop-shaped tubes bundle,” Int. J. Heat Mass Transfer, Vol. 183, 2022, 122123. 18. Marshalova G.S., Sukhotskii A.B., Kuntysh V.B., “Enhancing Energy Saving in Air Cooling Devices by Intensifying External Heat Transfer,” Chem Petrol Eng, Vol. 56, 2020 Pp.85–92. 19. Merker G.P., Hanke H., “Heat transfer and pressure drop on the shell-side of tube-banks having oval-shaped tubes,” International Journal of Heat and Mass Transfer, Vol. 29, iss. 12, 1986, Pp.1903-1909. 20. Xie G., Wang Q., Sunden B., “Parametric study and multiple correlations on airside heat transfer and friction characteristics of fin-and-tube heat exchangers with large number of large-diameter tube rows,” Appl. Therm. Eng., Vol. 29, iss. 1, 2009, Pp.1–16. 21. Khan M.S., Zou R., Yu A., “Computational simulation of air-side heat transfer and pressure drop performance in staggered mannered twisted oval tube bundle operating in crossflow,” Int J. of Thermal Sciences, Vol. 161, 2021, 106748. 22. ANSYS Fluent Reference Guide. ANSYS. Inc. Release 16.0. 2015.