Analysis of the Causes of the Inverse Population of Atomic Argon Levels in Condensing Supersonic Flows of Mixtures
The features of argon radiation mixed with molecular and atomic additives in condensing supersonic jets are analyzed. Mixtures of argon (95%) with methane (5%) and argon (95%) with monosilane (5%) were used. The mixture particles were activated by a well-focused electron beam. The dependence of the radiation intensity of individual argon lines on the gas-dynamic parameters in the jet is investigated. In a certain pressure range, different for various compositions of mixtures, an abnormal increase in the intensity of radiation on individual lines of atomic argon (ArI) was recorded. At the same time, no similar effect has been detected in the spectrum of argon (ArII) ions. It is established that the cause of the anomaly is a highly efficient molecular cluster mechanism of selective excitation of individual levels of argon atoms, which is absent in non-condensing jets and weakens at the stage of formation of large clusters. The main channels of energy transmission are considered and discussed. Based on the data obtained, an empirical model of the excitation - radiation process is proposed
supersonic jet, mixed clusters, electronic excitation of radiation, molecular beam mass spectrometry, molecular cluster energy exchange
Выполнен анализ особенностей излучения аргона в смеси с молекулярными и ато-марными добавками в конденсирующихся сверхзвуковых струях. Использованы смеси аргона (95%) с метаном (5%) и аргона (95%) с моносиланом (5%). Частицы смеси активировались хорошо сфокусированным пучком электронов. Исследована зависимость интенсивности излучения отдельных линий аргона от газодинамиче-ских параметров в струе. В определенном диапазоне давлений, различном для раз-ных составов смесей, зафиксировано аномальное увеличение интенсивности излу-чения на отдельных линиях атомарного аргона (ArI). В то же время в спектре ионов аргона (ArII)подобный эффект не обнаружен. Установлено, что причиной аномалии является высокоэффективный молекулярно-кластерный механизм селективного возбуждения отдельных уровней атомов аргона, отсутствующий в неконденсиру-ющихся струях и ослабевающий на стадии образования крупных кластеров. Рас-смотрены и обсуждены основные каналы передачи энергии. На основе полученных данных предложена эмпирическая модель процесса возбуждения - излучения.
1. Khmel S.Ya., Sharafutdinov R.G. Abstracts of invited lectures and contributed papers of 15th ESCAMPIG. Hungary, 2000. Vol. 24А, 384. 2. Sharafutdinov R.G. and Khmel S.Ya. Abnormal optical emissions in a condensing monosilane–argon gas jet activated by electron beam plasma // Plasma Chemistry and Plasma Processing. 2003. V. 23. No. 3. P. 463-488. DOI: 10.1023/A:1023230931546. 3. Golomb D. and Good R.E. Clusters in isentropically expanding nitric oxide and their effect on the chemiluminous NO–O reaction // J. Chem. Phys. 1986. V. 49. P. 4176–4180 . https://doi.org/10.1063/1.1670732. 4. Madirbaev V.Zh., Zarvin A.E., Korobeishchikov N.G. and Sharafutdinov R.G.. Ion-cluster re-actions initiated by an electron beam in mixtures of argon with methane and monosilane // Physics of the Solid State, 2002. V. 44. No. 3. P. 515-517. DOI: 10.1134/1.1462691. 5. Madirbaev V.Gh., Zarvin A.E., Korobeishchikov N.G. Abnormal excitation of argon radiation upon electron-beam activation in condensed supersonic jets of mixtures // XXXI International Conference on Phenomena in Ionized Gases (ICPIG XXXI). Granada, Spain. 14-19 July 2013. Proceedings. PS2-085. 6. Zarvin A.E., Madirbaev V.Zh., Korobeishchikov N.G. Highly effective ion - cluster mecha-nism of selective excitation of argon levels in jets of mixtures // XXI International Conference on Chemical Reactors (CHEMREACTOR‐21) [Electronic resource]: abstracts / (September 22‐25, 2014 in Delft, the Netherlands) / Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia & Delft University of Technology, TU Delft Process Technology Institute, The Netherlands; ed.: A.S. Noskov; comp.: T.V. Zamulina – Novosibirsk: BIC, 2014. 7. Dubrovin K.A., Zarvin A.E., Kalyada V.V. and Yaskin A.S. Causes of the glow of the anoma-lous secondary flow in supersonic clustered jets excited by a high-voltage electron beam // Technical Physics Letters. 2020. V. 46 No. 4. P. 337–340. DOI: 10.1134/S1063785020040057. 8. Zarvin A.E., Khudozhitkov V.E., Dubrovin K.A., Kalyada V.V. and Yaskin A.S. Plasma chem-ical reactions initiation in supersonic jets by a high-voltage electron beam // J. Phys.: Conf. Ser. 2020. V. 1683. No. 032008. doi:10.1088/1742-6596/1683/3/032008. 9. Zarvin A.E., Kalyada V.V., Madirbaev V.Zh., Korobeishchikov N.G., Khodakov M.D., Yaskin A.S., Khudozhitkov V.E., Gimelshein S.F. Condensable Supersonic Jet Facility for Analyses of Transient Low-Temperature Gas Kinetics and Plasma Chemistry of Hydrocarbons // IEEE Transact. Pl. Sci. 2017. V. 45. Iss. 5. P. 819-827. DOI: 10.1109/TPS.2017.2682901. 10. Korobeishchikov N.G., Zarvin A.E., Madirbaev V.Z. Hydrodynamics of pulsed supersonic un-derexpanded jets: Spatiotemporal characteristics // Tech. Phys. 2004. V. 49. No. 8. P. 973-981. 11. Kazakov V.V., Kazakov V.G., Kovalev V.S., Meshkov O.I., Yatsenko A.S. Electronic struc-ture of atoms: atomic spectroscopy information system // Physica Scripta, 2017. V. 92. 105002. DOI: 10.1088/1402-4896/aa822e. 12. Zarvin A.E., Kalyada V.V., Madirbaev V.Zh., Korobeishchikov N.G., Khodakov M.D., Yaskin A.S., Khudozhitkov V.E., Gimelshein S.F. Condensable Supersonic Jet Facility for Analyses of Transient Low-Temperature Gas Kinetics and Plasma Chemistry of Hydrocarbons // IEEE Transactions on Plasma Science. 2017. V. 45. Iss. 5. P. 819-827. DOI: 10.1109/TPS.2017.2682901. 13. Smith J.A. and Driscoll J.F. The electron-beam fluorescence technique for measurements in hypersonic turbulent flows // J. Fluid Mech. 1975. V. 72. Part 4. P. 695-719. 14. Zarvin A.E., Khudozhitkov V.E. and Kalyada V.V. Features of the methane clusters formation in supersonic jets of methane and its mixtures with monatomic gases // IOP Conf. Ser.: Mater. Sci. Eng. 2018. V. 387. 012086. doi:10.1088/1757-899X/387/1/012086. 15. Khudozhitkov V.E., Zarvin A.E. and Kalyada V.V. The role of carrier gas in cluster formation in methane supersonic jets // J. Phys.: Conf. Ser. 2018. V. 1105. 012112. doi :10.1088/1742-6596/1105/1/012112. 16. Korobeishchikov N.G., Zarvin A.E., Madirbaev V.Zh., Sharafutdinov R.G. Condensation of argon, monosilane and their mixtures in a pulse free jet // Pl. Chem. Pl. Proc. 2005. V. 25. No. 4. P. 319-349. DOI: 10.1007/s11090-004-3132-9. 17. Hagena O.F. and Obert W. Cluster formation in expanding supersonic jets: effect of pressure, temperature, nozzle size, and test gas // J. Chem. Phys. 1972. V. 56. Iss. 5. P. 1793–1802. https://doi.org/10.1063/1.1677455. 18. Zarvin A.E., Madirbaev V.Zh., Korobeishchikov N.G., Gartvich G.G. and Sharafutdinov R.G. Effect of small methane and monosilane additives on clustering in pulsed supersonic argon jets // Technical Physics. 2005. V. 50. No. 11. P. 1444–1450. 19. Korobeishchikov N.G., Zarvin A.E., Kalyada V.V., Schmakov A.A. Pulsed Gas Jets for For-mation of High-Intensity Cluster Beams // Advances in Materials Physics and Chemistry. 2012. V. 2. P. 31-34. doi:10.4236/ampc.2012.24B009. 20. Golomb D., Good R.E., Bailey A.B., Busby M.R. and Dawbarn R. Dimers, Clusters, and con-densation in free jets. II // J. Chem. Phys. 1972. V. 57. No. 9. P. 3844-3852. doi:10.1063/1.1678854. 21. Smirnov B.M. Generation of cluster beams // Physics – uspekhi. 2003. V. 46. No. 6. P. 589-628. DOI: 10.1070/PU2003v046n06ABEH001381. 22. Zarvin A.E., Kalyada V.V. and Khudozhitkov V.E. Features of molecular-beam mass spec-trometry registration of clusters in underexpanded supersonic jets // Thermophys. Aeromech. 2017. Vol. 24. No. 5. P. 671-681. DOI 10.1134/S0869864317050031. 23. Bird G.A. Transition regime behavior of supersonic beam skimmers // Phys. Fluids. 1976. V. 19. P. 1486-1491. doi: 10.1063/1.861351. 24. Zarvin A.E., Sharafutdinov R.G. On the formation of supersonic molecular beam with skim-mer // Rarefied Gas Dynamics. Ed. R. Campargue. Paris, France. Proceedings of 11-th Interna-tional Symposium. 1979. V. II. P. 991-1000. 25. Verheijen M.J., Beijerinck H.C.W., Renes W.A., Verster N.F. A quantitative description of skimmer interaction in supersonic secondary beams: Calibration of absolute intensities // Chem. Phys. 1984. V. 85. Iss. 1. P. 63-71. https://doi.org/10.1016/S0301-0104(84)85173-3. 26. Schütte S., Buck U. Strong fragmentation of large rare gas clusters by high energy electron im-pact // Intern. J. Mass Spectrom. 2002. V. 220. Iss. 2. P. 183–192. 27. NIST Chemistry WebBook. https://webbook.nist.gov/chemistry/ DOI: https://doi.org/10.18434/T4D303. 28. Hagena O.F. Nucleation and growth of clusters in expanding nozzle flows // Surface Science. 1981. V. 106. Iss. 1-3. P. 101-116. doi.org/10.1016/0039-6028(81)90187-4. 29. Buck U. and Krohne R. Cluster size determination from diffractive He atom scattering // J. Chem. Phys. 1996. V. 105. No. 13. P. 5408-5415. DOI: 10.1063/1.472406. 30. Striganov A.R. and Sventitskii N.S. Tables of Spectral Lines of Neutral and Ionized Atoms. 1968. Plenum, N.Y. 31. Berry R.S., Smirnov B.M. Phase transitions and adjacent phenomena in simple atomic systems // Physics – Uspekhi. 2007. V. 48. No. 4. P. 345-388. DOI: 10.1070/PU2005v048n04ABEH002022. 32. Zhukhovitskii D. I. Molecular dynamics study of cluster evolution in supersaturated vapor // J. Chem. Phys. 1995. V. 103. P. 9401-9407. https://doi.org/10.1063/1.470000. 33. Bernstein E.R. Dynamics and photochemistry of neutral Van der Waals clusters // Annu. Rev. Phys. Chem. 1995. V. 46. P. 197-222. 34. Baletto F., Ferrando R. Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects // Rev. Mod. Phys. 2005. V. 77. Iss. 1. P. 371-423. 35. Lundwall M., Lindblad A., Bergersen H., Rander T., Öhrwall G., Tchaplyguine M., Peredkov S., Svensson S. and Björneholm O. Photon energy dependent intensity variations observed in Auger spectra of free argon clusters // J. Phys. B: At. Mol. Opt. Phys. 2006. V. 39. P. 3321–3333. doi:10.1088/0953-4075/39/16/015. 36. Lundwall M., Fink R.F., Tchaplyguine M., Lindblad A., Öhrwall G., Bergersen H., Peredkov S., Rander T., Svensson S. and Björneholm O. Shell-dependent core-level chemical shifts ob-served in free xenon clusters // J. Phys. B: At. Mol. Opt. Phys. 2006. V. 39. P. 5225–5235. doi:10.1088/0953-4075/39/24/018. 37. Malins A., Williams S.R., Eggers J., Tanaka H., Royall C.P. The effect of inter-cluster interac-tions on the structure of colloidal clusters // J. Non-Cryst. Solids. 2011. V. 357. Iss. 2. P. 760-766. https://doi.org/10.1016/j.jnoncrysol.2010.08.021. 38. Richter C., Hollas D., Saak C.-M., Förstel M., Miteva T., Mucke M., Björneholm O., Sisourat N., Slavíček P. and Hergenhahn U. Competition between proton transfer and intermolecular Coulombic decay in water // Nature Communication. 2018. 9:4988 DOI: 10.1038/s41467-018-07501-6. 39. Aladi M., Bolla R., Rácz P., Földes I.B. Noble gas clusters and nanoplasmas in high harmonic generation // Nucl. Instr. Meth. in Phys. Res. B. 2016. V. 369. P. 68-71. DOI: 10.1016/j.nimb.2015.10.061.