A numerical modeling of the three dimensional flow around a 25°/55° double cone by a high-velocity gas flow on an unstructured grid is carried out. Numerical simulation was carried out in N2 (nitrogen) gas. For numerical simulation, the author's computer codes UST3D-AUSMUP2, UST3D-AUSMPW and USTFEN, developed at IPMech RAS, were used. These computer codes are based on the model of the complete system of Navier Stokes equations for a perfect gas, which is solved by different methods on an unstructured grid. Validation and verification of the obtained results were carried out. For numerical simulation of the flow, a geometric model of a double cone 25°/55° was constructed.
Пространственный расчет аэротермодинамики двойного конуса 25°/55° с помощью семейства компьютерных кодов UST3D
Выполнено численное моделирование пространственного обтекания двойного конуса 25°/55° высокоскоростным потоком газа на неструктурированной сетке. Численное моделирование проводилось в газе N2 (азот). Для численного моделирования использовались авторские компьютерные коды UST3D-AUSMUP2, UST3D-AUSMPW, а также USTFEN, разработанный в ИПМех РАН. В основе данных компьютерных кодов лежит модель полной системы уравнений Навье-Стокса совершенного газа, решаемая различными методами на неструктурированной сетке. Проведены валидация и верификация полученных результатов. Для численного моделирования обтекания была построена геометрическая модель двойного конуса 25°/55°.
1. Holden, M. S., and Wadhams, T. P., “Code Validation Study of Laminar Shock/Boundary Layer and Shock/Shock Interactions in Hypersonic Flow Part A: Experimental Measurements,” AIAA Paper 2001-1031, Jan. 2001. 2. Zheleznyakova A.L., Surzhikov S.T. Application of the method of splitting by physical processes for the computation of a hypersonic flow over an aircraft model of complex configuration. High Temperature, 2013, Vol. 51, no 6, pp. 816–829. 3. Zheleznyakova A.L., Surzhikov S.T. Calculation of a hypersonic flow over bodies of complex configuration on unstructured tetrahedral meshes using the AUSM scheme High Temperature,2014, Vol. 52, no 2, pp. 271–281. 4. Gnoffo, P. A., “Computational Fluid Dynamics Technology For Hypersonic Applications,” NASA Langley Research Center Hampton, VA 23681-0001. 5. James N. Moss, “Hypersonic Flows About a 25° Sharp Cone,” NASA Langley Research Center, MS 408A, Hampton, VA 23681-2199. 6. Zheleznyakova A.L., Surzhikov S.T. «On the way to creating a virtual GLA model. I». – M.: IPMech RAN, 2013. – P 160. – ISBN 978-5-91741-084-5. 7. Surzhikov S.T. Numerical interpretation of experimental data on aerodynamics of the HB-2 model using computer codes USTFEN and PERAT-3D // Physical-Chemical Kinetics in Gas Dynamics, Vol. 21, no 1, 2020. 8. Surzhikov S.T. Validation of computational code UST3D by the example of experimental aerodynamic data // Journal of Physics: Conference Series. 2017. Vol. 815. No. 012023. doi:10.1088/1742 6596/815/1/012023. 9. Kitamura K., Liou M.S., and Chang C.H. Extension and Comparative Study of AUSM-Family Schemes for Compressible Multiphase Flow September 2014. Vol. 16. No. 3. pp. 632 674. 10. Silvestrov P.V., Surzhikov S.T. Calculation of aerothermodynamics for high-speed X-43 using computer code UST3D and UST3D-AUSMPW // Physical-Chemical Kinetics in Gas Dynamics, Vol. 20, no 4, 2019. 11. Liseikin V.D. Grid Generation Methods. – Berlin: Springer, 1999. 12. Thompson J.F., Soni B.K., Weatherill N.P. Handbook of Grid Generation. CRC Press, 1998. 13. Anderson, J.D., Jr. Hypersonic and high temperature gas dynamics. NY: McGraw-Hill Book Company, 1989. 14. Koryukov I.A., Kryukov I.A. Three-dimensional calculation of the aerothermodynamics of a double cone 25°/55° on an unstructured grid // Journal of Physics: Conference Series. 2018. Vol. 1009. No. 012003. doi:10.1088/1742-6596/1009/1/012003.