Experiments on heat exchange in supersonic underexpanded jets of high-enthalpy nitrogen with ceramic specimens based on HfB2-SiC at a pressure in the pressure chamber of 8.5 hPa, gas flow rate through the discharge channel of 3.6 g/s, RF-generator power 64 kW were carried out on the induction RF-plasmatron VGU-4 (IPMech RAS). Three heat exchange modes were implemented using water-cooled conical nozzles with output diameters of 30, 40 and 50 mm. For the conditions of experiments in supersonic regimes, the numerical method in the framework of the Navier-Stokes equations and simplified Maxwell equations is used to simulate the flows of nitrogen plasma in the discharge channel of the plasmatron and the flow of underexpanded jets of dissociated nitrogen around a cylindrical holder with a ceramic specimen. From a comparison of experimental and calculated data on heat fluxes to the specimen surface, the effective coefficient of heterogeneous recombination of nitrogen atoms on the ceramic surface at temperatures of 2273–2843 K was determined.
Экспериментальное и численное моделирование теплообмена поверхности ультравысокотемпературной керамики в недорасширенных струях диссоциированного азота
На индукционном ВЧ-плазмотроне ВГУ-4 (ИПМех РАН) проведены эксперименты по теплообмену в сверхзвуковых недорасширенных струях высокоэнтальпийного азота с керамическими образцами на основе HfB2-SiC при давлении в барокамере 8.5 гПа, расходе газа через разрядный канал 3.6 г/с, мощности ВЧ-генератора плазмотрона по анодному питанию 64 кВт. Реализованы три режима теплообмена с использованием водоохлаждаемых конических сопел с диаметрами выходных се-чений 30, 40 и 50 мм. Для условий экспериментов в сверхзвуковых режимах чис-ленным методом в рамках уравнений Навье-Стокса и упрощенных уравнений Максвелла выполнено моделирование течений плазмы азота в разрядном канале плазмотрона и обтекания недорасширенными струями диссоциированного азота цилиндрической державки с керамическим образцом. Из сопоставления экспери-ментальных и расчетных данных по тепловым потокам к поверхности трех образ-цов определен эффективный коэффициент гетерогенной рекомбинации атомов азо-та на поверхности ультравысокотемпературной керамики при температурах 2273 – 2843 К.
1. Simonenko E.P., Sevast’Yanov D.V., Simonenko N.P., Sevast’Yanov V.G., Kuznetsov N.T. Promising ultra-high-temperature ceramic materials for aerospace applications // Russian journal of inorganic chemistry. 2013. Vol. 58. № 14. P. 1669-1693. https://doi.org/10.1134/S0036023613140039 2. Savino R., Criscuolo L., Di Martino G. D., Mungiguerra S. Aero-thermo-chemical characteri-zation of ultra-high-temperature ceramics for aerospace applications // Journal of the Europe-an Ceramic Society. 2018. Vol. 38. № 8. P. 2937-2953. https://doi.org/10.1016/j.jeurceramsoc.2017.12.043 3. Zhang X., Hu P., Han J., Meng S. Ablation behavior of ZrB2–SiC ultra high temperature ceramics under simulated atmospheric re-entry conditions // Composites Science and Tech-nology. 2008. Vol. 68. № 7-8. P. 1718-1726. https://doi.org/10.1016/j.compscitech.2008.02.009 4. Parthasarathy T.A., Petry M.D., Cinibulk M.K., Mathur T., Gruber M. R. Thermal and oxida-tion response of UHTC leading edge samples exposed to simulated hypersonic flight condi-tions //Journal of the American Ceramic Society. 2013. Vol. 96. № 3. P. 907-915. 5. Scatteia L., Alfano D., Cantoni S., Monteverde F., Fumo M. D.S., Maso A.D. Plasma torch test of an ultra-high-temperature ceramics nose cone demonstrator //Journal of Spacecraft and Rockets. 2010. Vol. 47. № 2. P. 271-279. 6. Gordeev A.N., Kolesnikov A.F. Induction plasmatrons of the VGU series // Topical Prob-lems in Mechanics. Physico-Chemical Mechanics of Liquids and Gases (Nauka, Moscow, 2010), p. 151–177 [in Russian]. 7. Gordeev A.N., Kolesnikov A.F., Yakushin M.I. An Induction Plasma Application to "Bu-ran's" Heat Protection Tiles Ground Tests // SAMPE Journal. 28(3). May/June 1992. P. 29-33. 8. Vlasov V.I., Zalogin G.N., Zemlyanskii B. A., Knot’ko V.B. Methods and results of an ex-perimental investigation of the catalytic activity of materials at high temperatures // Fluid Dynamics 38(5). 2003. P. 815–825. 9. Zhestkov B.E. Investigation of thermochemical stability of thermal protection materials // TsAGI Sci. J. 45(8). 2014. P. 781–802. 10. Chazot O., Krassilchikoff H.V., Thomel J. TPS ground testing in plasma wind tunnel for catalytic properties determination // AIAA Paper No. 1252. 2008. https://doi.org/10.2514/6.2008-1252 11. Massuti-Ballester B., Pidan S., Herdrich G., Fertig M. Recent catalysis measurements at IRS // Adv.Space Res. 56(4). 2015. P. 742–765. https://doi.org/10.1016/j.asr.2015.04.028 12. Kovalev V. L. Heterogeneous Catalytic Processes during the Entry into the Atmosphere // Moscow Univ. Press, 1999 [in Russian]. 13. Kovalev V. L., Kolesnikov A. F. Experimental and theoretical simulation of heterogeneous catalysis in aerothermochemistry (a Review) // Fluid Dynamics 40(5). 2005. P. 669-693. 14. Marschall J. Chamberlain A., Crunkleton D., Rogers B. Catalytic atom recombination on ZrB2/SiC and HfB2/SiC ultrahigh-temperature ceramic composites //Journal of Spacecraft and Rockets. 2004. Vol. 41. № 4. P. 576-581. 15. Marschall J., Pejaković D. A., Fahrenholtz W. G., Hilmas G. E., Panerai F., Chazot O. Tem-perature jump phenomenon during plasmatron testing of ZrB2-SiC ultrahigh-temperature ce-ramics // Journal of thermophysics and heat transfer. 2012. Vol. 26. № 4. P. 559-572. 16. Scatteia L., Borrelli R., Cosentino G., Bêche E., Sans J. L., Balat-Pichelin M. Catalytic and radiative behaviors of ZrB2-SiC ultrahigh temperature ceramic composites // Journal of Spacecraft and rockets. 2006. Vol. 43. № 5. P. 1004-1012. 17. Marschall J., Fletcher D. G. High-enthalpy test environments, flow modeling and in situ di-agnostics for characterizing ultra-high temperature ceramics //Journal of the European Ceram-ic Society. 2010. Vol. 30. № 11. P. 2323-2336. 18. Kolesnikov A.F., Lukomskii I.V., Chaplygin A.V., Sakharov V.I. Experimental and Numeri-cal Modeling of Heat Transfer to Graphite Surface in Underexpanded Dissociated-Nitrogen Jets // Fluid Dynamics, 2021, Vol. 56, No 6, P. 897-905. https://doi.org/10.1134/S0015462821060070 19. Lukomsky I.V., Chaplygin A.V., Kolesnikov A.F. Utility model patent No. 205572 U1 Rus-sian Federation, IPC G01N 25/00. A device for measuring the heat flow to the surface of a material heated in a jet of high-enthalpy gas to high temperatures: No. 2021109253: applica-tion 05.04.2021: publ. 21.07.2021 20. N. E. Afonina, Gromov V.G., Sakharov V.I. HIGHTEMP technique of high temperature gas flows numerical simulations // Proc. 5th Europ. Symp. on Aerothermodyn. Space Vehicles. Cologne, Germany, 2004. SP 563 (ESTEC, Noordwijk, 2004), p. 323–328. 21. Glushko V.P. (ed.). Thermodynamic Properties of Individual Materials. Vols. 1 and 2 (Nau-ka, Moscow, 1978) [in Russian]. 22. Godunov S.K., Zabrodin A.V., Ivanov M.Ya., Kraiko A.N., Prokopov G. P. Numerical So-lution of Multidimensional Problems of Gasdynamics (Nauka, Moscow, 1976) [in Russian]. 23. Afonina N.E., Vasil’evskii S.A., Gromov V.G., Kolesnikov A.F., Pershin I.S., Sakha-rov V.I., Yakushin M. I. Flow and heat transfer in underexpanded jets issuing from the sonic nozzle of a plasmatron // Fluid Dynamics 37(5). 2002. P. 803–814. 24. Sakharov V.I. Numerical simulation of thermally and chemically nonequilibrium flows in underexpanded induction plasmatron jets // Fluid Dynamics 42(6). 2007. P 1007–1016. 25. Vasil’evskii S.A., Kolesnikov A.F. Numerical simulation of equilibrium induction plasma flows in a cylindrical plasmatron channel // Fluid Dynamics 35(5). 2000. P 769–772. 26. Ibragimova L.B., Smekhov G.D., Shatalov O. P. Dissociation rate constants of diatomic molecules underthermal equilibrium conditions // Fluid Dynamics 34(1). 1999. P 153–157. https://doi.org/10.1007/BF02698767 27. Losev S.A., Makarov V.N., Pogosbekyan M.Yu. Model of physic-chemical kinetics behind the front of a very intense shock wave in air // Fluid Dynamics 30(2). 1995. P 299–309. https://doi.org/10.1007/BF02029844 28. Park C. Review of chemical-kinetic problems of future NASA missions, Earth entries // J. Thermophys. Heat Transfer 7(3). 1993. P 385–398. 29. Losev S.A., Makarov V.N., Pogosbekyan M.Ju., Shatalov O.P., Nikol’sky V.S. Thermo-chemical nonequilibrium kinetic models in strong shock waves on air // AIAA Paper № 1994. 1990. https://doi.org/10.2514/6.1994-1990 30. Hirschfelder J.O., Curtiss C.F., Bird R.B. Molecular Theory of Gases and Liquids // Wiley, New York. 1954. 31. Reid R.C., Prausnitz J.M., Sherwood T. K. The Properties of Gases and Liquids // McGraw-Hill, New York. 1977. 32. Afonina N.E., Gromov V.G. Thermochemical nonequilibrium computations for a MARS Express Probe // Proc. 3rd Europ. Symp. Aerothermodynam. Space Vehicles, ESTEC, Noordwijk, The Netherland. 1998. P. 179–186. 33. Gordeev O.A., Kalinin A.P., Komov A.L., Lusternik V.E., Samuilov E.V., Sokolova I.A., Fokin L.R. Interaction potentials, elastic cross-sections, and collision integrals of the air components for the temperatures up to 20000 K. Reviews on thermal properties of materials // Joint Institute of High Temperatures of the Russian Academy of Sciences, Moscow, № 5(55). 1985.