Multitemperature model of a SPS reactor for the synthesis and densification of zirconium nitride
The model includes the temperature of the solid phase of the mixture of Zr, ZrN, the temperature of the gas phase N2, the temperature of the reactor vessel made of porous graphite and the temperature of the low-resistance layer of tungsten alloy to the elec-trodes of which a potential difference is applied. A model of an SPS spark sintering reac-tor with a gas supply channel is proposed. The operating modes of a reactor with a multi-stage nitrogen flux at the reactor inlet, including the elastic limit with a transition from thermoelasticity model to thermoplasticity one for a porous mixture of solid particles with a gas phase, are investigated. The results are in satisfactory agreement with experi-mental data.
variable porosity, synthesis of zirconium nitride, SPS reactor with gas supply, multitemperature model.
Модель включает температуру твердой фазы смеси Zr и ZrN, температуру газовой фазы N2 и температуру корпуса реактора из пористого графита, температуру низ-коомного слоя вольфрамового сплава к электродам которого приложена разность потенциалов. Предложена модель реактора искрового спекания SPS, который со-держит канал для подачи газа Исследованы режимы работы реактора с многоста-дийным потоком азота на входе в реактор, включающие предел упругости с пере-ходом к термопластичности для пористой смеси твердых частиц с газовой фазой, Результаты удовлетворительно согласуются с экспериментальными данными.
[1] R. W. Harrison & W. E. Lee (2016) Processing and properties of ZrC, ZrN and ZrCN ceramics: Advances in Applied Ceramics, 115:5, 294-307, DOI: 10.1179/1743676115Y.0000000061. [2] Z. A. Munir, U. Anselmi-Tamburini and M. Ohyanagi: ‘Theeffect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method, J’, Mater. Sci., 2006, 41, (3), 763–777. [3] D. M. Hulbert, A. Anders, J. Andersson, E. J. Lavernia and A. K. Mukherjee: ‘A discussion on the absence of plasma in spark plasma sintering’, Scr. Mater, 2009, 60, (10), 835–838. [4] H. F. Jackson and W. E. Lee: ‘Properties and characteristics of ZrC’, in ‘Comprehensive nuclear materials’, (ed. R. J. M. Konings), 339–372; 2012, Oxford, Elsevier. [5] Shijiao Zhao, Jingtao Ma, Rui Xu, Xuping Lin, Xing Cheng, Shaochang Hao, Xingyu Zhao, Changsheng Deng, Bing Liu.Synthesis and Characterization of Zirconium Nitride Nanopowders by Internal Gelation and Carbothermic Nitridation.// CIENTIFIC REPORTS | (2019)9:19199 | https://doi.org/10.1038/s41598-019-55450-x [6] Dietz A.A. Oxynitride ceramic materials based on combustion products of industrial metal powders in air. // Dissertation. Tomsk 2006 [7] Russias, S. Cardinal, C. Esnouf, G. Fantozzi and K. Bienvenu: ‘Hot pressed titanium nitride obtained from SHS starting powders: influence of a pre-sintering heat-treatment of the starting powders on the densification process’, J. Eur. Ceram. Soc., 2007, 27(1), 327-335. [8] T. Sakai and M. Iwata: ‘Effect of oxygen on sintering of AlN’,J. Mater. Sci, 1977, 12, (8), 1659–1665. [9] Z. A. Munir, U. Anselmi-Tamburini and M. Ohyanagi: ‘Theeffect of electric field and pressure on the synthesis andconsolidation of materials: a review of the spark plasmasintering method, J’, Mater. Sci., 2006, 41, (3), 763–777. [10] Merja, P., Masahide, T. 8c Tsuyoshi, N. Sintering and characterization of (Pu,Zr)N. J. Nucl. Mater. 444,421-427 (2014).,. [11] G.V. Samsonov Nitrides / ed. E.E. Gritsenko. - Kiev: Naukova Dumka, 1969 .-- 379 p. [12] Kurganov G.V., Levinsky Yu.V. et al. Chemistry and Physics of Nitrides / G.V. Kurganov and others - Kiev: Naukova Dumka, 1968 .-- 47 p. [13] R. Harrison, O. Rapaud, N. Pradeilles, A. Maitre and W. E. Lee: ‘On the fabrication of ZrCxNy from ZrO2 via two-step carbothermic reduction-nitridation’, J. Eur. Ceram. Soc, 2015, 35, (5), 1413-1421. [14] G.V. Samsonov Nitrides / ed. E.E. Gritsenko. - Kiev: Naukova Dumka, 1969 .-- 379 p. [15] G. Lee, M.S. Yurlova, D. Giuntini, E.G. Grigoryev, O.L. Khasanov, J. McKittrick, E.A. Olevsky, Densification of zirconium nitride by spark plasma sintering and high voltage electric discharge consolidation: A comparative analysis, Ceram. Int. 41(10, Part B) (2015) 14973-14987. [16] G. Lee, E.A. Olevsky, C. Maniere, A. Maximenko, O. Izhvanov, C. Back, J. McKittrick, Effect of electric current on densification behavior of conductive ceramic powders consolidated by spark plasma sintering, Acta Materialia (2017), doi: 10.1016/j.actamat.2017.11.010.) [17] Martirosyan K S and Luss D. Carbon Combustion Synthesis of Oxides Process Demonstration and Features AIChE 2005, vol. J 51 10, pp. 2801-2810. [18] A.A. Markov, M.A. Hobossian, K.S. Martirosyan. Investigation of the synthesis of ferrites behind the combustion wave using models of sliding and temperature jumps and concentrations of the components of the gas phase on the surface of the pores of the solid phase. Physicochemical kinetics in gas dynamics 2015 V16 (1) [19] A.A. Markov, I.A. Filimonov, and K.S. Martirosyan, Synthesis simulation of submicron particles of complex oxides // Theoretical Foundations of Chemical Engineering 2017(1) pp.1-12. [20] Markov, I. A. Filimonov, and K. S. Martirosyan. Carbon Combustion Synthesis of Oxides: Effect of Mach, Peclet, and Reynolds Numbers on Gas Dynamics. International Journal of Self Propagating High Temperature Synthesis, 2013, 22, No. 1, pp. 11–17. [21] A.A. Markov, I.A. Filimonov, and K.S. Martirosyan. Simulation of front motion in a reacting condensed two phase mixture, J. Comput. Phys. Volume 231, Issue 20, 15 August 2012, Pages 6714–6724 (2012). [22] А.А. Markov, On Thermal and Mass Dispersion Effect on Barium Titanate Synthesis via CCSO. Physical-Chemical Kinetics in Gas Dynamics 2019 V20 (4) pp. 1-14. http://chemphys.edu.ru/issues/2019-20-4/articles/870/, http://www.chemphys.edu.ru DOI: http://doi.org/10.33257/PhChGD.20.4.870 [23] A A Markov. On fine particles synthesis using three-zone reactor August 2020. Journal of Physics Conference Series 1611:012047. DOI: 10.1088/1742-6596/1611/1/012047 [24] Whitaker S Transport equations for multi-phase systems Chemical Engineering Science,1973 vol 28 pp 139-147 [25] Hsu, C.T.; Cheng, P.: Thermal dispersion in a porous medium. Int. J. Heat Mass Transf. 1990 33, 1587–1597. [26] Fatehi M and Kaviany M Role of gas-phase reaction and gas-solid thermal nonequilibrium in reverse combustion Int Heat Mass Transfer 1997 11 pp 2607-20 [27] Oliveira A A M and Kaviany M Nonequilibrium in the transport of heat and reactants in combustion in porous media Progress in Energy and Combustion Science 2001 27 pp 523-45 [28] F. M. Pereira, A. A. M. Oliveira and F. F. Fachini. Theoretical analysis of ultra-lean premixed flames in porous inert media J. Fluid Mech. 2010, 657, pp. 285–307. [29] M. Fatehi and M. Kaviany. Role of gas-phase reaction and gas-solid thermal nonequilibrium in reverse combustion. Int. Heat Mass Transfer. 1997 11, pp.2607-2620. [30] Delgado JMPQ 2007 Longitudinal and transverse dispersion in porous media Chem Eng Res Des 2007 85 pp 1245–1252 [31] S.N. Sorokova, A.G. Knyazeva. Associated model of sintering powders of the Ti-TiAI3 system // Bulletin of the Tomsk Polytechnic University. 2009. T. 314. No. 2. S. 96-101. [32] S.N. Sorokova, A.G. Knyazeva. Mathematical modeling of volumetric changes during sintering of powders of the Ti-Al system. // Physical mesomechanics 11 6 (2008) 95-101. [33] Markov, A.. Modeling the Synthesis of Barium Titanate Micron Particles in Axisymmetric Direct-Flow and Three-Zone Reactors. J Eng Phys Thermophy 94, 1312–1325 (2021). https://doi.org/10.1007/s10891-021-02412-8 [34] A. A. Markov. Thermal and Concentration Expansion in the Synthesis of Barium Titanate in a Once-Through Reactor.// Theoretical Foundations of Chemical Engineering, 2021, Vol. 55, No. 5, pp. 929–941. [35] J. Adachi, K. Kurosaki, M. Uno and S. Yamanaka: ‘Thermal and electrical properties of zirconium nitride’, J. Alloys Compd, 2005, 399, (12), 242–244. [36] K. Aigner, W. Lengauer, D. Rafaja and P. Ettmayer: ‘Lattice parameters and thermal expansion of Ti(CxN^x), Zr(CxN^x), Hf(CxN1-x) and TiN^x from 298 to 1473 K as investigated by high-temperature X-ray diffraction’, J. Alloys Compd, 1994, 215, (1-2), 121-126. [37] A.A. Markov. Simulation of a two-stage reactor for the synthesis and sintering of ultrafine zirconium nitride. // Proceedings of the Twenty-second International Conference on Computational Mechanics and Modern Applied Software Systems (VMSPS'2021), September 4-13, 2021 Alushta, -. M. Publishing house MAI, pp. 411-413. ISBN 978-5-4316-0824-7.(in Russian). [38] Olevsky E.A. (1998), Theory of sintering: from discrete to continuum. Review, Mater. Sci. & Eng. R: Reports, 40-10 [39] E. Olevsky, G. Timmermans, M. Shtern, L. Froyen, and L. Delaey, The permeable element method for modeling of deformation processes in porous and powder materials: Theoretical basis and checking by experiments, Powd. Technol. -93/2, 123-141 (1997) [40] E. Olevsky, V. Tikare, and T. Garino, Multi-scale modeling of sintering - A Review, J. Amer. Ceram. Soc., 89 (6), 1914-1922 (2006) [41] Markov A. A. Jump-Slip simulation technique for combustion in submicron tubes and submicron pores. Computers and Fluids 2014 99C, pp. 83-92. [42] R. Harrison, O. Rapaud, N. Pradeilles, A. Maitre and W. E. Lee: ‘On the fabrication of ZrCxNy from ZrO2 via two-step carbothermic reduction-nitridation’, J. Eur. Ceram. Soc, 2015, 35, (5), 1413-1421. [43] Xie, Z. Fu, Y. Wang, S. W. Lee and K. Niihara: ‘Synthesis of nanosized zirconium carbide powders by a combinational method of sol-gel and pulse current heating’, J. Eur. Ceram. Soc, 2014, 34, (1), 13e1-13e7. [44] Bardelle and D. Warin: ‘Mechanism and kinetics of the uranium-plutonium mononitride synthesis’, J. Nucl. Mater, 1992, 188, 36^2. [45] Merja, P., Masahide, T. 8c Tsuyoshi, N. Sintering and characterization of (Pu,Zr) N. J. Nucl. Mater. 444,421-427 (2014). [46] A. Ortega, M. D. Alcala and C. Real: ‘Carbothermal synthesis of silicon nitride (Si3N4): kinetics and diffusion mechanism’, J. Mater. Process. Technol., 2008, 195, (13), 224-231. [47] A. W. Weimer, G. A. Eisman, D. W. Susnitzky, D. R. Beaman and J. W. McCoy: ‘Mechanism and kinetics of the carbothermal nitridation synthesis of alpha-silicon nitride’, J. Am. Ceram. Soc, 1997, 80, (11), 2853-2863. [48] Bruno A. Boley, Jerome H. Weiner.Theory of Thermal Stresses (Dover Civil and Mechanical Engineering) Revised Edition. Publisher : Dover Publications; Revised edition 2011. 608 p. [49] H. Conrad, Electroplasticity in metals and ceramics, Mat. Sci. Eng. A. 287(2) (2000) 276- 287 [50] B. A. Boley, J. H. Weiner, Theory of Thermal Stresses, Dover Publications, p. 608, 2011. [51] D.A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Second Enlarged and Revised Edition), Translation Editor: J.P. Appleton, Plenum Press, 1969. [52] A A Markov and I A Filimonov. Model of thermal radiation using heat absorption by CO2 in submicron pores with application to magnesium-zinc ferritefine disperse particles synthesis via combustion // APhM2017 IOP Publishing IOP Conf. Series: Journal of Physics: Conf. Series 1009 (2018) 012040 doi :10.1088/1742-6596/1009/1/012040.