Plasma-assisted combustion of syngas-air mixture is considered, when either air, or syn-gas, or their mixture is exposed to the discharge. Optimal reduced electric field values of the discharge in various configurations in terms of shortening the induction time are de-termined. It is shown that the afterglow processes taking place in the discharge products prior to mixing with other components of the combustible mixture can essentially vary the mechanism of the discharge action on the ignition.
О влиянии параметров разряда на кинетику плазменно-стимулированного воспламенения синтез-газа в воздухе
Рассмотрено плазменно-стимулированное воспламенение синтез-газа в воздухе, когда воздействию электрического разряда подвергается либо отдельно воздух или синтез-газ, а затем происходит их смешение и воспламенение, либо заранее пере-мешанная топливовоздушная смесь. Определены оптимальные величины приве-денной напряженности электрического поля разряда с точки зрения сокращения времени воспламенения. Показано, что процессы, происходящие за время доставки продуктов разряда в зону смешения, могут существенно изменить механизм влия-ния разряда на воспламенение.
1. Starikovskaia S.M. Plasma assisted ignition and combustion. J. Phys. D: Appl. Phys. 2006. Vol. 39. P. R265–R299. 2. Popov N.A. Kinetics of plasma-assisted combustion: effect of non-equilibrium excitation on the ignition and oxidation of combustible mixtures. Plasma Sources Sci. Technol. 2016. Vol. 25. P. 043002 (31pp) 3. Starikovskiy A.Y., Aleksandrov N.L. Plasma-assisted ignition and combustion. Prog. Energy Combust. Sci. 2013. Vol. 39. P. 61–110. 4. Sun W., Ju Y. Nonequilibrium plasma-assisted combustion: a review of recent progress. J. Plasma Fusion Res. 2013. Vol. 89. No. 4. P. 208–219. 5. Starik A.M., Sharipov. A.S., Titova N.S. Intensification of syngas ignition through the excita-tion of CO molecule vibrations: a numerical study. J. Phys. D: Appl. Phys. 2010. Vol. 43. P. 245501. 6. Starik A.M., Sharipov A.S., Titova N.S. The effect of the vibrational excitation of molecules on the shock-induced combustion in a syngas-air mixture. Combust. Sci. and Tech. 2011. Vol. 183. P. 75–103. 7. Sharipov A.S., Starik A.M. Kinetic mechanism of CO–H2 system oxidation promoted by excit-ed singlet oxygen molecules. Combust. Flame. 2012. Vol. 159. P. 16–29. 8. Starik A.M., Loukhovitski B.I., Chernukho A.P. Comprehensive analysis of combustion en-hancement mechanisms in a supersonic flow of CH4–O2 mixture with electric-discharge acti-vated oxygen molecules. Plasma Sources Sci. Technol. 2012. Vol. 21. No. 3. P. 035015. 9. Starik A.M., Loukhovitski B.I., Sharipov A.S., Titova N.S. Physics and chemistry of the influ-ence of excited molecules on combustion enhancement. Phil. Trans. R. Soc. A. 2015. Vol. 373. P. 20140341. 10. Arsentiev I.V., Savelieva V.A., Titova N.S. Numerical analysis of H2 formation during partial oxidation of H2S–H2O upon activation of oxidizer by an electric discharge. Int. J. Hydrogen Energy. 2018. Vol. 43. No. 41. P. 374001. 11. Savelieva V.A., Titova N.S., Arsentiev I.V. Numerical study of syngas production during par-tial oxidation of sour natural gases upon activation of oxygen by an electric discharge. Energy and Fuels. 2019. Vol. 33. No. 11. P. 11887–11898. 12. Arsentiev I.V., Kadochnikov I.N. Proceedings of International Conference on Aviation Motors ICAM-2020, 18–21 May 2021, Moscow. P. 210–213. 13. Hagelaar G.J.M., Pitchford L.C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci. Technol. 2005. Vol. 14. P. 722. 14. Phelps A.V., Pitchford L.C. Anisotropic scattering of electrons by N2 and its effect on electron transport. Phys. Rev. 1985. Vol. 31. P. 2932–49. http://jila.colorado.edu/~avp/collision_data/electronneutral/electron.txt 15. Alves L.L. The IST-Lisbon database on LXCat. J. Phys. Conf. Series. 2014 Vol. 565. No. 1. P. 012007. 16. Arsentiev I.V., Losev S.A., Titova N.S., Starik A.M. Fiziko-khimicheskaya kinetika v gazovoi dinamike. 2010. Vol. 10. P. 161–176. https://chemphys.edu.ru/issues/2010-10/articles/329/ 17. Arsentiev I.V., Loukhovitski B.I., Starik A.M. Application of state-to-state approach in estima-tion of thermally nonequilibrium reaction rate constants in mode approximation. Chem. Phys. 2012. Vol. 398. P. 73–80. 18. Starik A.M., Korobov A.N., Titova N.S. Combustion improvement in HCCI engine operating on synthesis gas via addition of ozone or excited oxygen molecules to the charge: modeling study. Int. J. Hydrogen Energy. 2017. Vol. 42. No 15. P. 10475–10484. 19. Pelevkin A.V., Kadochnikov I.N., Sharipov A.S. Fiziko-khimicheskaya kinetika v gazovoi dinamike. 2019. Vol. 20. No. 2. https://chemphys.edu.ru/issues/2019-20-2/articles/837/ 20. Slack M., Grillo A. Investigation of hydrogen-air ignition sensitized by nitric oxide and by ni-trogen dioxide. NASA Report CR-2896. 1977. 21. Starik A.M., Pelevkin A.V., Titova N.S. Modeling study of the acceleration of ignition in ethane-air and natural gas-air mixtures via photochemical excitation of oxygen molecules. Combust. Flame. 2017. Vol. 176. P. 81–93. 22. Kadochnikov I.N., Arsentiev I.V. Modelling of vibrational nonequilibrium effects on the H2-air mixture ignition under shock wave conditions in the state-to-state and mode approximations. Shock Waves. 2020. Vol. 30. No. 5. P. 491–504. 23. Pelevkin A.V., Sharipov A.S. Reactions of electronically excited molecular nitrogen with H2 and H2O molecules: theoretical study. J. Phys. D: Appl. Phys. 2018. Vol. 51. No. 18. P. 184003. 24. Herron. J.T. Evaluated chemical kinetics data for reactions of N(2D), N(2P), and N2(A3u+) in the gas phase. Journal of Physical and Chemical Reference Data. 1999. Vol. 28. P. 1453–1483. 25. Bystrov N., Emelianov A., Eremin A., Loukhovitski B., Sharipov A., Yatsenko P. Experimental study of high temperature oxidation of dimethyl ether, n-butanol and methane. Combust. Flame. 2020. Vol. 218. P. 121–133. 26. Arsentiev I.V., Sharipov A.S., Loukhovitski B.I. Aviatsionnie dvigateli. 2021. No. 2(11). P. 61–69.