Сравнение ПВРД и ГПВРД режимов в камере сгорания эксперимента HIFIRE-2



Comparison of ramjet and scramjet modes in the combustion chamber of the HIFIRE-2 experiment

This paper describes a three-dimensional model for calculating a propulsion system run-ning on hydrocarbon fuel. A global kinetic mechanism of the combustion of JP-7 avia-tion kerosene is presented. The study of the structure of the flow in the HiFire-2 engine was carried out, and the fields of concentrations and temperature were obtained. A quali-tative comparison of the results obtained with the calculations of other authors has been carried out. The difference in the operating modes of the ramjet and scramjet is shown.

ramjet engine, scramjet engine, numerical simulation, combustion, JP-7


Том 22, выпуск 4, 2021 год



В работе изложена трехмерная методика расчета двигательной установки на угле-водородном топливе. Представлена глобальная кинетическая схема горения авиационного керосина JP-7. Проведено исследование структуры течения в двигатель-ной установке эксперимента HiFire-2 и получены поля концентраций и температуры. Проведено качественное сравнение полученных результатов с расчетами других авторов. Показано различие в режимах работы ПВРД и ГПВРД.

ПВРД, ГПВРД, численное моделирование, горение, JP-7


Том 22, выпуск 4, 2021 год



1. Seleznev R.K., Surzhikov S.T., Shang J.S. A review of the scramjet experimental data base // Prog. Aerosp. Sci. Elsevier Ltd, 2019. Vol. 106, № February. P. 43–70.
2. Seleznev R.K. History of scramjet propulsion development // J. Phys. Conf. Ser. 2018. Vol. 1009, № 1. P. 012028.
3. Storch A. et al. Combustor Operability and Performance Verification for HIFiRE Flight 2 // 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. P. 13.
4. Jackson K., Gruber M., Barhorst T. The HIFiRE Flight 2 Experiment: An Overview and Status Update // 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. P. 19.
5. Hass N. et al. HIFiRE Direct-Connect Rig (HDCR) Phase I Scramjet Test Results from the NASA Langley Arc-Heated Scramjet Test Facility // 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. P. 18.
6. VULCAN. http://vulcan-cfd.larc.nasa.gov. NASA Langley Research Center, Hampton, VA [Electronic resource].
7. Menter F.R. Two-equation eddy-viscosity turbulence models for engineering applications // AIAA J. 1994. Vol. 32, № 8. P. 1598–1605.
8. Edwards J.R. A low-diffusion flux-splitting scheme for Navier-Stokes calculations // Comput. Fluids. 1997. Vol. 26, № 6. P. 635–659.
9. Magnussen B.F., Hjertager B.H. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion // Symp. Combust. 1977. Vol. 16, № 1. P. 719–729.
10. Metacomp, http://www.metacomptech.com/index.html, 2005. [Electronic resource].
11. Liu J. et al. Simulations of Cavity-stabilized Flames in Supersonic Flows Using Reduced Chemical Kinetic Mechanisms // 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. P. 2006–4862.
12. Gnoffo P.A., Gupta R.N., Shinn J.L. Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium // NASA Tech. Pap. 2867. 1989. P. 58.
13. GNOFFO P. Asynchronous, macrotasked relaxation strategies for the solution of viscous, hypersonic flows // 10th Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. Vol. 1.
14. Quinlan J. et al. A Priori Analysis of Flamelet-based Modeling for a Dual-Mode Scramjet Combustor // 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. P. 1–20.
15. Saghafian A. et al. Large eddy simulations of the HIFiRE scramjet using a compressible flamelet/progress variable approach // Proc. Combust. Inst. The Combustion Institute, 2015. Vol. 35, № 2. P. 2163–2172.
16. Yentsch R.J., Gaitonde D. V. Numerical Investigation of Dual-Mode Operation in a Rectangular Scramjet Flowpath // J. Propuls. Power. 2014. Vol. 30, № 2. P. 474–489.
17. Bermejo-Moreno I. et al. Wall-modeled large-eddy simulations of the HIFiRE-2 scramjet // CTR Annual Research Briefs. 2013. P. 17.
18. Crow A. et al. Thermal Radiative Analysis of the HIFiRE-2 Scramjet Engine // 43rd AIAA Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. № June. P. 1–22.
19. Берд Р., Стьюарт В., Лайтфут Е. Явления переноса. М.: Изд-во «Химия». 1974. 687 с.
20. Анфимов Н.А. Ламинарный пограничный слой в многокомпонентной смеси газов//Изв. АН СССР. Механика и машиностроение. 1962. № 1. С.2531.
21. Edwards J. et al. Low-diffusion flux-splitting methods for flows at all speeds // 13th Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. Vol. 36, № 9.
22. Суржиков С.Т. Пространственная задача радиационной газовой динамики командного модуля Аполлон-4 при сверхорбитальном входе в атмосферу// Изв. РАН. МЖГ. 2018. №2. С.149-160.
23. Surzhikov S. et al. Unsteady Thermo-Gasdynamic Processes in Scramjet Combustion Chamber with Periodical Input of Cold Air // 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. P. 25.
24. Seleznev R.K. Validation of two-dimensional model by the example of a supersonic inlet-isolator // J. Phys. Conf. Ser. 2018. Vol. 1009. P. 012030.
25. Seleznev R.K. Validation of 3D model by the example of a supersonic inlet-isolator // J. Phys. Conf. Ser. 2018. Vol. 1009. P. 012031.
26. Geraci G. et al. Progress in scramjet design optimization under uncertainty using simulations of the HIFiRE direct connect rig // AIAA Scitech 2019 Forum. 2019. P. 0–20.
27. Yentsch R.J., Gaitonde D. V. Unsteady three-dimensional mode transition phenomena in a scramjet flowpath // J. Propuls. Power. 2015. Vol. 31, № 1. P. 104–122.
28. Yentsch R., Gaitonde D. Numerical Investigation of the HIFiRE-2 Scramjet Flowpath // 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2013. № January. P. 1–45.
29. Chickos J.S., Zhao H. Measurement of the vaporization enthalpy of complex mixtures by correlation-gas chromatography. The vaporization enthalpy of RP-1, JP-7, and JP-8 rocket and jet fuels at T = 298.15 K // Energy and Fuels. 2005. Vol. 19, № 5. P. 2064–2073.
30. WESTBROOK C.K., DRYER F.L. Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames // Combust. Sci. Technol. 1981. Vol. 27, № 1–2. P. 31–43.
31. Dufour E., Bouchez M. Computational analysis of a kerosene-fuelled scramjet // 10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. № c.
32. Georgiadis N.J., Mankbadi M.R., Vyas M.A. Turbulence model effects on RANS simulations of the HIFiRE flight 2 ground test configurations // 52nd Aerosp. Sci. Meet. 2014. 2014. P. 1–19.