Comparison of ramjet and scramjet modes in the combustion chamber of the HIFIRE-2 experiment
This paper describes a three-dimensional model for calculating a propulsion system run-ning on hydrocarbon fuel. A global kinetic mechanism of the combustion of JP-7 avia-tion kerosene is presented. The study of the structure of the flow in the HiFire-2 engine was carried out, and the fields of concentrations and temperature were obtained. A quali-tative comparison of the results obtained with the calculations of other authors has been carried out. The difference in the operating modes of the ramjet and scramjet is shown.
В работе изложена трехмерная методика расчета двигательной установки на угле-водородном топливе. Представлена глобальная кинетическая схема горения авиационного керосина JP-7. Проведено исследование структуры течения в двигатель-ной установке эксперимента HiFire-2 и получены поля концентраций и температуры. Проведено качественное сравнение полученных результатов с расчетами других авторов. Показано различие в режимах работы ПВРД и ГПВРД.
1. Seleznev R.K., Surzhikov S.T., Shang J.S. A review of the scramjet experimental data base // Prog. Aerosp. Sci. Elsevier Ltd, 2019. Vol. 106, № February. P. 43–70. 2. Seleznev R.K. History of scramjet propulsion development // J. Phys. Conf. Ser. 2018. Vol. 1009, № 1. P. 012028. 3. Storch A. et al. Combustor Operability and Performance Verification for HIFiRE Flight 2 // 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. P. 13. 4. Jackson K., Gruber M., Barhorst T. The HIFiRE Flight 2 Experiment: An Overview and Status Update // 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. P. 19. 5. Hass N. et al. HIFiRE Direct-Connect Rig (HDCR) Phase I Scramjet Test Results from the NASA Langley Arc-Heated Scramjet Test Facility // 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. P. 18. 6. VULCAN. http://vulcan-cfd.larc.nasa.gov. NASA Langley Research Center, Hampton, VA [Electronic resource]. 7. Menter F.R. Two-equation eddy-viscosity turbulence models for engineering applications // AIAA J. 1994. Vol. 32, № 8. P. 1598–1605. 8. Edwards J.R. A low-diffusion flux-splitting scheme for Navier-Stokes calculations // Comput. Fluids. 1997. Vol. 26, № 6. P. 635–659. 9. Magnussen B.F., Hjertager B.H. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion // Symp. Combust. 1977. Vol. 16, № 1. P. 719–729. 10. Metacomp, http://www.metacomptech.com/index.html, 2005. [Electronic resource]. 11. Liu J. et al. Simulations of Cavity-stabilized Flames in Supersonic Flows Using Reduced Chemical Kinetic Mechanisms // 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. P. 2006–4862. 12. Gnoffo P.A., Gupta R.N., Shinn J.L. Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium // NASA Tech. Pap. 2867. 1989. P. 58. 13. GNOFFO P. Asynchronous, macrotasked relaxation strategies for the solution of viscous, hypersonic flows // 10th Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. Vol. 1. 14. Quinlan J. et al. A Priori Analysis of Flamelet-based Modeling for a Dual-Mode Scramjet Combustor // 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. P. 1–20. 15. Saghafian A. et al. Large eddy simulations of the HIFiRE scramjet using a compressible flamelet/progress variable approach // Proc. Combust. Inst. The Combustion Institute, 2015. Vol. 35, № 2. P. 2163–2172. 16. Yentsch R.J., Gaitonde D. V. Numerical Investigation of Dual-Mode Operation in a Rectangular Scramjet Flowpath // J. Propuls. Power. 2014. Vol. 30, № 2. P. 474–489. 17. Bermejo-Moreno I. et al. Wall-modeled large-eddy simulations of the HIFiRE-2 scramjet // CTR Annual Research Briefs. 2013. P. 17. 18. Crow A. et al. Thermal Radiative Analysis of the HIFiRE-2 Scramjet Engine // 43rd AIAA Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. № June. P. 1–22. 19. Берд Р., Стьюарт В., Лайтфут Е. Явления переноса. М.: Изд-во «Химия». 1974. 687 с. 20. Анфимов Н.А. Ламинарный пограничный слой в многокомпонентной смеси газов//Изв. АН СССР. Механика и машиностроение. 1962. № 1. С.2531. 21. Edwards J. et al. Low-diffusion flux-splitting methods for flows at all speeds // 13th Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. Vol. 36, № 9. 22. Суржиков С.Т. Пространственная задача радиационной газовой динамики командного модуля Аполлон-4 при сверхорбитальном входе в атмосферу// Изв. РАН. МЖГ. 2018. №2. С.149-160. 23. Surzhikov S. et al. Unsteady Thermo-Gasdynamic Processes in Scramjet Combustion Chamber with Periodical Input of Cold Air // 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. P. 25. 24. Seleznev R.K. Validation of two-dimensional model by the example of a supersonic inlet-isolator // J. Phys. Conf. Ser. 2018. Vol. 1009. P. 012030. 25. Seleznev R.K. Validation of 3D model by the example of a supersonic inlet-isolator // J. Phys. Conf. Ser. 2018. Vol. 1009. P. 012031. 26. Geraci G. et al. Progress in scramjet design optimization under uncertainty using simulations of the HIFiRE direct connect rig // AIAA Scitech 2019 Forum. 2019. P. 0–20. 27. Yentsch R.J., Gaitonde D. V. Unsteady three-dimensional mode transition phenomena in a scramjet flowpath // J. Propuls. Power. 2015. Vol. 31, № 1. P. 104–122. 28. Yentsch R., Gaitonde D. Numerical Investigation of the HIFiRE-2 Scramjet Flowpath // 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2013. № January. P. 1–45. 29. Chickos J.S., Zhao H. Measurement of the vaporization enthalpy of complex mixtures by correlation-gas chromatography. The vaporization enthalpy of RP-1, JP-7, and JP-8 rocket and jet fuels at T = 298.15 K // Energy and Fuels. 2005. Vol. 19, № 5. P. 2064–2073. 30. WESTBROOK C.K., DRYER F.L. Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames // Combust. Sci. Technol. 1981. Vol. 27, № 1–2. P. 31–43. 31. Dufour E., Bouchez M. Computational analysis of a kerosene-fuelled scramjet // 10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. № c. 32. Georgiadis N.J., Mankbadi M.R., Vyas M.A. Turbulence model effects on RANS simulations of the HIFiRE flight 2 ground test configurations // 52nd Aerosp. Sci. Meet. 2014. 2014. P. 1–19.