The Study of the Flow Structure in the Scramjet Inlet-Isolator with Throttle




Non-stationary process in a scramjet inlet-isolator with the mechanical throttle is modeled. Fields of velocity, pressure, and temperature are calculated by Three -dimensional computational model based on unsteady governing equations including Navier-Stokes equations, energy conservation and diffusion equations together with system of chemical kinetic equations. Two-dimensional temperature, pressure and velocity visualization are presented. Method of the numerical simulation and details of the problem under consideration are presented in [1–6].

throttle, scramjet, inlet, isolator.


Volume 20, issue 3, 2019 year


Исследование Структуры Течения в Воздухозаборнике ГПВРД с Поднятой Дрос-сельной Заслонкой

В работе моделируется нестационарный процесс в воздухозаборнике ГПВРД при поднятии механической дроссельной заслонки. Поля скоростей, давления и температуры рассчитываются с помощью трехмерной вычислительной модели, основанной на нестационарных уравнениях Навье-Стокса, сохранения энергии, уравнений диффузии и системы уравнений химической кинетики. Представлена двумерная визуализация трехмерных расчетов полей температуры, числа Маха и давления. Метод численного интегрирования подробно описан в [1–6].

дроссель, ГПВРД, воздухозаборник


Volume 20, issue 3, 2019 year



Анимация температуры (в K) внутри камеры

View
1.1 MB

Анимация числа Маха внутри камеры

View
955.9 KB


Анимация давления внутри камеры

View
701.8 KB



1. Kotov D. V., Surzhikov S.T. Computation of hypersonic flow and radiation of viscous chemically reacting gas in a channel modeling a section of a scramjet // High Temp. 2012. Vol. 50, № 1. P. 120–130.
2. Surzhikov S. T. Modelirovanie radiacionno-konvektivnogo nagreva model'nyh kamer PVRD na vodorodnom i uglevodorodnom toplive//Fiziko-himicheskaja kinetika v gazovoj dinamike. 2014. T.15, vyp. 3. http://chemphys.edu.ru/issues/2014-15-3/articles/230/.
3. Seleznev R.K. Validation of two-dimensional model by the example of a supersonic inlet-isolator // J. Phys. Conf. Ser. 2018. Vol. 1009. P. 012030.
4. Seleznev R.K. Validation of 3D model by the example of a supersonic inlet-isolator // J. Phys. Conf. Ser. 2018. Vol. 1009. P. 012031.
5. Kotov D.V., Surzhikov S.T. Raschet giperzvukovogo techenija i izluchenija vjazkogo himicheski reagirujushhego gaza v kanale, modelirujushhem uchastok GPVRD// Teplofizika vysokih temperatu. 2012. T.50. T1. S.126-136.
6. Surzhikov S. et al. Unsteady Thermo-Gasdynamic Processes in Scramjet Combustion Chamber with Periodical Input of Cold Air // 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. P. 25.
7. Zvegincev V.I. Gazodinamicheskie problemy pri rabote sverhzvukovyh vozduhozabornikov v neraschetnyh uslovijah (obzor) // Teplofizika i ajeromehanika. 2017. Vol. 6. P. 829–858.
8. Wagner J.L. Experimental Studies of Unstart Dynamics in Inlet / Isolator Configurations in a Mach 5 Flow // Assembly. 2009.
9. Seleznev R.K., Surzhikov S.T., Shang J.S. A review of the scramjet experimental data base // Prog. Aerosp. Sci. Elsevier Ltd, 2019. Vol. 106, № February. P. 43–70.
10. Borisov V.E., Kudryashov I.Y., Lutsky A.E. Numerical simulation of the pseudo-shock region formation in the channel // Keldysh Institute Preprints. 2016. № 2. 1–24 p.
11. Seleznev R.K. Numerical study of the flow structure in the supersonic inlet-isolator // J. Phys. Conf. Ser. 2018. Vol. 1009. P. 012034.
12. Jang I., Pečnik R., Moin D.P. A numerical study of the unstart event in an inlet/isolator model // Cent. Turbul. Res. Annu. Res. Briefs. 2010. № 2009. P. 93–103.
13. Koo H. Large-Eddy Simulations of Scramjet Engines // Dr. Diss. 2010.
14. Boles J. et al. Simulations of High-Speed Internal Flows Using LES/RANS Models // 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. № January. P. 1–22.