The Study of the Flow Structure in the Scramjet Inlet-Isolator with Throttle
Non-stationary process in a scramjet inlet-isolator with the mechanical throttle is modeled. Fields of velocity, pressure, and temperature are calculated by Three -dimensional computational model based on unsteady governing equations including Navier-Stokes equations, energy conservation and diffusion equations together with system of chemical kinetic equations. Two-dimensional temperature, pressure and velocity visualization are presented. Method of the numerical simulation and details of the problem under consideration are presented in [1–6].
В работе моделируется нестационарный процесс в воздухозаборнике ГПВРД при поднятии механической дроссельной заслонки. Поля скоростей, давления и температуры рассчитываются с помощью трехмерной вычислительной модели, основанной на нестационарных уравнениях Навье-Стокса, сохранения энергии, уравнений диффузии и системы уравнений химической кинетики. Представлена двумерная визуализация трехмерных расчетов полей температуры, числа Маха и давления. Метод численного интегрирования подробно описан в [1–6].
1. Kotov D. V., Surzhikov S.T. Computation of hypersonic flow and radiation of viscous chemically reacting gas in a channel modeling a section of a scramjet // High Temp. 2012. Vol. 50, № 1. P. 120–130. 2. Суржиков С. Т. Моделирование радиационно-конвективного нагрева модельных камер ПВРД на водородном и углеводородном топливе//Физико-химическая кинетика в газовой динамике. 2014. Т.15, вып. 3. http://chemphys.edu.ru/issues/2014-15-3/articles/230/. 3. Seleznev R.K. Validation of two-dimensional model by the example of a supersonic inlet-isolator // J. Phys. Conf. Ser. 2018. Vol. 1009. P. 012030. 4. Seleznev R.K. Validation of 3D model by the example of a supersonic inlet-isolator // J. Phys. Conf. Ser. 2018. Vol. 1009. P. 012031. 5. Котов Д.В., Суржиков С.Т. Расчет гиперзвукового течения и излучения вязкого химически реагирующего газа в канале, моделирующем участок ГПВРД// Теплофизика высоких температу. 2012. Т.50. Т1. С.126-136. 6. Surzhikov S. et al. Unsteady Thermo-Gasdynamic Processes in Scramjet Combustion Chamber with Periodical Input of Cold Air // 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. P. 25. 7. Звегинцев В.И. Газодинамические проблемы при работе сверхзвуковых воздухозаборников в нерасчетных условиях (обзор) // Теплофизика и аэромеханика. 2017. Vol. 6. P. 829–858. 8. Wagner J.L. Experimental Studies of Unstart Dynamics in Inlet / Isolator Configurations in a Mach 5 Flow // Assembly. 2009. 9. Seleznev R.K., Surzhikov S.T., Shang J.S. A review of the scramjet experimental data base // Prog. Aerosp. Sci. Elsevier Ltd, 2019. Vol. 106, № February. P. 43–70. 10. Borisov V.E., Kudryashov I.Y., Lutsky A.E. Numerical simulation of the pseudo-shock region formation in the channel // Keldysh Institute Preprints. 2016. № 2. 1–24 p. 11. Seleznev R.K. Numerical study of the flow structure in the supersonic inlet-isolator // J. Phys. Conf. Ser. 2018. Vol. 1009. P. 012034. 12. Jang I., Pečnik R., Moin D.P. A numerical study of the unstart event in an inlet/isolator model // Cent. Turbul. Res. Annu. Res. Briefs. 2010. № 2009. P. 93–103. 13. Koo H. Large-Eddy Simulations of Scramjet Engines // Dr. Diss. 2010. 14. Boles J. et al. Simulations of High-Speed Internal Flows Using LES/RANS Models // 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. № January. P. 1–22.