Aerodynamic cooling for supersonic wake flow behind a backward-facing step




The results of an experimental study of the effect of reducing the adiabatic wall temperature (aerodynamic cooling) for a case of separated supersonic flow behind a backward-facing step are presented. The study was conducted on unsteady-state regime during the launching a wind tunnel before reaching the equilibrium thermal state. The parameters of thermal gas dynamics were compared with the results obtained for the case of continuous flow around the smooth wall. The free-stream Mach number was 2.2, the Reynolds number along the length of the dynamic boundary layer was at least 20 million at the nozzle exit section. The height of the step ranged from 8 to 12 mm. The graphs of the wall temperature, stagnation flow temperature, adiabatic wall temperature, the total and static pressure, the heat flux, the distribution of the temperature recovery coefficient and the relative Stanton number along the length of the model are presented. The studies were carried out in the joint inter-university laboratory of MSU-BMSTU "Thermal Gas Dynamics" on the experimental base of the Research Institute of Mechanics of Lomono-sov Moscow State University.

aerodynamic cooling, adiabatic wall temperature, temperature recovery coefficient, heat transfer coefficient, supersonic flow, temperature stratification


Volume 20, issue 1, 2019 year


Аэродинамическое охлаждение стенки при течении сверхзвукового потока в следе за обратным уступом

Представлены результаты экспериментального исследования эффекта снижения адиабатной температуры стенки (аэродинамического охлаждения) при отрывном течении сверхзвукового потока за уступом. Исследование проводилось на нестационарном режиме в процессе запуска аэродинамической установки до выхода на равновесный тепловой режим. Параметры термогазодинамики сравнивались с результатами, полученным при безотрывном обтекании гладкой стенки. Число Маха набегающего потока составило 2.2, критерий Рейнольдса по длине динамического пограничного слоя – не менее 2·10^7 на срезе сопла. Высота уступа варьировалась от 8 до 12 мм. Представлены графики изменения в процессе эксперимента температуры стенки и потока, полного и статического давления, теплового потока, а также распределения по длине модели коэффициента восстановления температуры и относительного числа Стантона. Исследования выполнены в совместной межвузовской лаборатории МГУ-МГТУ «Термогазодинамика» на экспериментальной базе НИИ механики МГУ.

аэродинамическое охлаждение, адиабатная температура стенки, коэффициент восстановления температуры, коэффициент теплоотдачи, сверхзвуковой поток, температурная стратификация


Volume 20, issue 1, 2019 year



1. Leont'ev A.I. Gazodinamicheskie metody temperaturnoi stratifikatsii (obzor) [Gas-Dynamic Methods of Temperature Stratification (a Review)]. Fluid Dynamics, 2002, vol. 37, no. 4, pp. 512-529. DOI: 10.1023/A:1020629000437.
2. Burtsev S.A., Leont'ev A.I. Study of the influence of dissipative effects on the temperature stratification in gas flows (Review). High Temperature, 2014, V. 52, Iss. 2, pp. 297-307. DOI: 10.1134/S0018151X13060060.
3. Lapin Yu.V. Turbulentnyy pogranichnyy sloy v sverkhzvukovykh potokakh gaza (Turbulent boundary layer in supersonic gas flows) // Glavnaya redaktsiya fiziko-matematicheskoy literatury izdatel'stva «Nauka», Moskva, 1970, 344 p. (in Russian).
4. Schlichting H. Teoriya pogranichnogo sloya [Boundary layer theory]. Moscow, Nauka Publ., 1974. 711 p. (English version of book: Boundary layer theory, McGraw-Hill, 1968. 747 p.).
5. Surzhikov S., Shuvalov M. Estimation of Radiation-Convection Heating of Four Types of Reentry Spacecrafts // Physical-Chemical Kinetics in Gas Dynamics. 2014. V.15, iss. 4. http://chemphys.edu.ru/issues/2014-15-4/articles/237/
6. Kuzenov V., Dikalyuk A. The realization of an approximate method for calculating convective heat transfer near the surface of a GLA of a complex geometric shape // Physical-Chemical Kinetics in Gas Dynamics. 2017. V.18, iss. 2. http://chemphys.edu.ru/issues/2017-18-2/articles/689/
7. Eckert E.R.G. Energy separation in fluid streams // Int. Comm. Heat mass transfer. Vol. 13, 1986. P. 127-143.
8. Leont'ev A.I., Zditovets A.G., Vinogradov Y.A., Strongin M.M., Kiselev N.A. Bezmashinnoe ehnergorazdelenie gazovyh potokov (Machine-free energy separation of gas flows) / Pod red. A.I. Leont'eva. Izdatel'stvo KURS, Moskva. 2016. 112 p.
9. Sanitjia S., Goldstein R.J. Forced Convection Heat Transfer from a Circular Cylinder in Cross-flow to Air and Liquids // International Journal of Heat and Mass Transfer. 2004. V. 47. P. 4795.
10. Aleksyuk A.I., Osiptsov A.N. Direct numerical simulation of energy separation effect in the near wake behind a circular cylinder // International Journal of Heat and Mass Transfer. 2018. Vol. 119. P. 665–677.
11. Ryan L.F. Experiments on aerodynamic cooling // Ph. D. thesis, Eidgen. Tech. Hockschule, Zurich. 1951.
12. Thomann H. Measurements of the recovery temperature in the wake of a circular cylinder and of a wedge at Mach numbers between 0.5 and 3 // The Aeronautical Research Institute of Sweden, FFA Report 84. 1959.
13. Brinich P.F. Recovery temperatures and heat transfer near two-dimensional roughness elements at Mach 3.1 // NACA TN4213. 1958.
14. Gadd G.E., Cope W.F., Attridge J.L., Heat-transfer and skin-friction measurements at a Mach number of 2.44 for a turbulent boundary layer on a flat surface and in regions of separated flow // R. & M. No. 3148. A.R.C. Technical Report. London. 1960. 42 p.
15. Garland B.J., Hall J.R., Measurement of aerodynamic heat transfer in turbulent separated re-gions at a Mach number of 1.8 // NACA RM L57L09, 1958. 16 p.
16. P.K. Chang. Separation of flow / Pergamon Press, London. 1970. 760 p.
17. Carscallen W.E., Currie T.C., Hogg S.I., Gostelow J.P. Measurement and computation of ener-gy separation in the vertical wake flow of a turbine nozzle cascade // J. of Turbomachinery, 121, 4, 1999. P. 703–708.
18. Popovich S.S. Vliyaniye udarnykh voln na effekt bezmashinnogo energorazdeleniya (Shock wave influence on energy separation effect): dis. kand. tekhn. nauk. Moskva, NII mekhaniki MGU, 2016. 172 p. (in Russian).
19. Leontiev A.I., Popovich S.S., Strongin M.M., Vinogradov Yu.A. Adiabatic wall temperature and heat transfer coefficient influenced by separated supersonic flow // EPJ Web of Conferences. 2017. Vol. 159. P. 1–5. DOI: 10.1051/epjconf/201715900030.
20. Leontiev A.I., Popovich S.S., Vinogradov Y.A., Strongin M.M. Experimental research of supersonic aerodynamic cooling effect and its application for energy separation efficiency // Proceedings of the 16th International Heat Transfer Conference, IHTC-16. Vol. 212244. Beijing, China, 2018. P. 1–8.
21. Leontiev A. I., Popovich S.S., Vinogradov Y.A., Strongin M.M. Experimental research of heat transfer in supersonic separated compressible gas flow // Journal of Physics: Conference Series. 2018. Vol. 1129, no. 012022. P. 1–4. DOI: 10.1088/1742-6596/1129/1/012022.
22. Popovich S.S. Experimental Automation and Data Processing Features for Supersonic Heat Transfer Research // Software Engineering. 2018. I. 1. P. 35–45. DOI: 10.17587/prin.9.35-45.
23. Hayes J.R., Neumann R.D. Introduction to the aerodynamic heating analysis of supersonic missiles // Hemsch M., Nielsen J. (Eds.). Tactical Missile Aerodynamics. Progress in Astro-nautics and Aeronautics Series. Vol. 142, AIAA, Washington, 1992. P. 63-114.
24. Vinogradov Y.A., Popovich S.S., Strongin M.M. Eksperimental'noye issledovaniye koeffitsiyenta vosstanovleniya temperatury i intensifikatsii teplootdachi pri techenii na ploskoy stenke za rebrom sverkhzvukovogo potoka szhimayemogo gaza (Experimentally studied recovery factor and heat transfer augmentation with supersonic flow on a flat wall behind the edge) // Science and Education (Scientific Issue of Bauman Moscow State Technical University). 2016. N. 11. P. 55-75. (in Russian).
25. Schultz D.L., Jones T.V. Heat-transfer measurements in short-duration hypersonic facilities. AGARDograph 165, London, 1973. 149 p.
26. Popovich S.S. Eksperimental'noye issledovaniye vliyaniya padayushchego skachka uplotneniya na adiabatnuyu temperaturu stenki v sverkhzvukovom potoke szhimayemogo gaza (Experimental study of an incident shock wave influence on adiabatic wall temperature in a supersonic compressible gas flow) // Teplovyye protsessy v tekhnike. 2014. V. 6. N. 3. P. 98-104. (in Russian).
27. Popovich S.S., Egorov K.S., Vinogradov Yu.A. Experimental research of adiabatic wall temperature influenced by separated supersonic flow // Proceedings of 15th International Heat Transfer Conference, IHTC-15-8962, 2014, 11 p.