Computer modeling of a flow over two hypersonic ballistic configurations using UST3D programming code elaborated in Laboratory of Radiative Gas Dynamics of Ishlinsky Institute for Problems in Mechanics was carried out. The first configuration represented blunted cylinder-flare geometry, while the second was standard HB-2 ballistic model. Simulation results showed good accordance with various experimental and numerical tests data. Non-viscous versions of UST3D code were developed to testify the numerical method validity on tetrahedral meshes. Numerical cases with the same two geometries were examined to determine solution discrepancy between non-viscous and original algorithmes. Agreement of numerical results obtained with non-viscous solver using slip boundary conditions and the original code was observed. This research demonstrated UST3D method validity for the considered range of problems.
Моделирование сверхзвукового обтекания баллистических моделей в программном коде UST3D
Программа UST3D, разработанная в лаборатории радиационной газовой динамики Института проблем механики им. А.Ю. Ишлинского, протестирована на двух задачах обтекания гиперзвуковых моделей при варьируемых углах атаки и числах Маха. Показано хорошее совпадение с экспериментальными и численными результатами других авторов. Для проверки корректности использования вязкой постановки задачи на тетраэдральных сетках разработана невязкая версия программы UST3D. Проведено моделирование нескольких расчётных случаев в невязкой постановке. Расхождение результатов, полученных в невязкой и оригинальной версиях программы, составило менее 1%. Проведённое исследование свидетельствует о корректности использования программы UST3D для решения рассматриваемого типа задач.
гиперзвуковое обтекание, компьютерное моделирование, постановка граничных условий
1. Kimmel R L, Adamczak D. HIFiRE-1 Background and Lessons Learned. AIAA. 2012. 2012-1088. 2. Surzhikov S T. Validation of computational code UST3D by the example of experimental aerodynamic data J. Phys.: Conf. Ser. 2017. Vol. 815. 012023. 3. Zheleznyakova A L, Surzhikov S T Application of the Method of Splitting by Physical Processes for the Computation of a Hypersonic Flow over an Aircraft Model of Complex Configuration High Temperature. 2013. Vol. 51 (6). P. 816–829. 4. Ewans M V , Harlow F H. The particle-in-cell method for hydrodynamic calculations. Los Alamos Scientific Lab. Rept. N LA–2139. Los Alamos, 1957. 5. Belotserkovsky O M and Davydov Yu M. Method of the Large Particles for Gas Dynamics. Moscow: Nauka, 1982. p 392 (in Russian) 6. Marchuk G I. Splitting methods. Moscow: Nauka, 1988. p 263 (in Russian) 7. Krasil'shchikov A P and Guryashkin L P. Experimental investigation of bodies of revolution in hypersonic flows. Moscow: PhysMathLit, 2007. p 208 (in Russian) 8. Gray J D Summary Report on Aerodynamic Characteristics of Standard Models HB-1 and HB-2 AEDC-TDR-64-137, 1964. 9. Kuchi-Ishi S, Watanabe S, Nagai S, Tsuda S, Koyama T, Hirabayashi N, Sekine H, Hozumi K Comparative Force/Heat Flux Measurements between JAXA Hypersonic Test Facilities Using Standard Model HB-2 (Part 1: 1.27 m Hypersonic Wind Tunnel Results). JAXA Research and Development Report. JAXA-RR-04-035E. Tokyo, 2005 10. Adamov N P, Vasenev L G, Zvegintsev V I., Mazhul I I, Nalivaichenko D G, Novikov A V, Kharitonov A M, and Shpak S I Characteristics of the AT-303 hypersonic wind tunnel. Part 2. Aerodynamics of the HB-2 reference model Thermophysics and Aeromechanics. 2006. Vol. 13 (2). 11. Pajčin M P, Simonovic A M, Ivanov T D, Komarov D M, Stupar S N. Numerical analysis of a hypersonic turbulent and laminar flow using a commercial CFD solver. Thermal Science. 2016. Vol. 20 (6). P. S1-S13. 12. Mohammadifard F, Karami M, Heidari M. Investigation of Flow Field in a Typical Hypersonic Wind Tunnel over a Standard Mode. J. of Applied Fluid Mechanics. 2013. Vol. 6 (4). P. 529–536. 13. Krasil'shchikov A P and Podobin V P Experimental study of sphere aerodynamic characteristics in free flight up to M ~ 15 Fluid Dynamics. 1968. Vol. 3 (4). P. 132–134. 14. Bazzhin A P, Blagosklonov V I, Minailos A N and Pirogova S V. Supersonic flow of a perfect gas over a sphere. Uch. Zap. TsAGI. 1971. Vol. 2 (3). P. 95–101 15. Lyubimov A N and Rusanov V V. Gas Flows Over Blunt Bodies. Moscow: Nauka, 1970 p 668 (in Russian) 16. Lipman G V and Roshko A. Elements of Gas Dynamics. Moscow: IL, 1960. p 352 (in Russian) 17. Maslennikov V G. Study of detached shock wave location for supersonic flow past ellipsoids of revolution in gases with different intramolecular structure. Moscow-Leningrad: Aerophysical Studies of Supersonic Flows, 1967. p 241 (in Russian)