Rate Coefficients of Exchange Reactions in Air and Carbon Dioxide
A simple theoretical Treanor-Marrone model is generalized to calculate state-resolved ex-change reaction rate coefficients in air and carbon dioxide. An analytical dependence of the activation energy on the vibrational energy of the reactants and products is obtained for the Zeldovich reactions. This allows taking into account the vibrational excitation of NO molecules formed as a result of exchange reactions. The state-resolved reaction rate coefficients calculated using the proposed model are in good agreement with the latest data of quasi-classical trajectory calculations. The developed approach is applied to calculate the state-resolved exchange reaction rate coefficients in carbon dioxide. The effect of the model parameter on the reaction rate coefficients is estimated. Multi-temperature rate coefficients of exchange reactions in CO2 are calculated under conditions characteristic for shock waves on the basis of vibrational distributions taking into account fast intermode VV exchange between symmetric and bending modes and slow VT relaxation in bending and antisymmetric modes. The effect of vibrational excitation of various modes on the reaction rate is discussed.
Проведено обобщение простой теоретической модели Тринора-Маррона для расчета поуровневых коэффициентов скорости обменных реакций в воздухе и углекислом газе. Для реакций Зельдовича получена аналитическая зависимость энергии активации от колебательной энергии реагентов и продуктов. Это позволило учесть колебательное возбуждение молекулы NO, образующейся в результате обменных реакций. Коэффициенты скорости реакций, рассчитанные по предложенной модели, хорошо согласуются с последними данными квазиклассических траекторных расчетов. Разработанный подход применен для вычисления поуровневых коэффициентов скорости обменных реакций в углекислом газе, оценено влияние параметра модели на скорость реакции. Проведен расчет многотемпературных коэффициентов скорости обменных реакций в CO2 в условиях, характерных для течений за ударными волнами. При этом использованы колебательные распределения, учитывающие быстрый межмодовый VV обмен между симметричной и деформационной модами и замедленную VT релаксацию в деформационной и антисимметричной модах. Обсуждается влияние колебательного возбуждения различных мод на скорость реакции.
1. P.V. Marrone and C.E. Treanor. Chemical relaxation with preferential dissociation from excited vibrational levels // Phys. Fluids, 6(9):1215–1221, 1963. 2. Gilibert M., Aguilar A., Gonzales M., Sayos R. A quasiclassical trajectory study of the effect of the initial rovibrational level and relative translational energy on the dynamics of the N((_ ^4)Su)+O_2 ((_ ^3)∑_g^-▒ )→NO((_ ^2)∏▒ _u )+O((_ ^3)P_g ) atmospheric reaction on the 2A' ground potential energy surface // Chem. Phys. 1993. Vol. 178. Pp. 287-303. 3. Gilibert M., Gimenez X., Gonzales M. et al. A comparison between experimental, quantum and classical properties for the N((_ ^4)S)+O_2 ((_ ^3)∑_g^-▒ )→NO((_ ^2)∏▒ )+O((_ ^3)P) reaction // Chem. Phys. 1995. Vol. 191. Pp. 1-15. 4. Gilibert M., Gonzales M., Sayos R. et al. Reactive cross sections involving atomic nitrogen and ground and vibrationally excited molecular oxygen and nitric oxide // Molecular Physics and Hypersonic Flows / Ed. by M. Capitelli. Netherlands: Kluwer Acad. Publishers, 1996. Pp. 53-84. 5. Knab O., Frühauf H.H., Jonas S. Multiple temperature descriptions of reaction rate constants with regard to consistent chemical-vibrational coupling // AIAA paper 92-2947, AIAA 27th Thermophysics Conference. Nashville, USA,: July 1992. Pp. 1-15. 6. Knab O., Frühauf H.H., Messerschmid E.W. Theory and Validation of the Physically consistent Coupled Vibration-Chemistry-Vibration Model // J. Thermophys. Heat Transfer. 1995. Vol. 9, no. 2. Pp. 219-226. 7. Seror S., Druguet M.C., Schall E., Zeitoun D. A New Vibration-Exchange Reaction Coupling Model for Hypersonic Air Flows // AIAA Paper. 1997. Vol. 97-2556. 8. A. Aliat. State-to-state dissociation–recombination and chemical exchange rate coefficients in excited diatomic gas flows // Physica A, 387:4163–4182, 2008. 9. Bose D., Candler G. V. Thermal rate constants of the N_2+O→NO+ reaction using ab initio 3A'' and 3A' potential energy surfaces // J. Chem. Phys. 1996. Vol. 104, no. 8. P. 2825. 10. Bose D., Candler G. V. Thermal nonequilibrium rates of the Zeldovich reactions // AIAA Paper. 1997. Vol. 97-0133. 11. Birely J. H., Lyman J. L. Effect of reagent vibrational energy on measured reaction rate constants // J. Photochem. 1975. Vol. 4. P. 269. 12. STELLAR Database. http://esther.ist.utl.pt/pages/stellar.html 13. Luo Han, Kulakhmetov M., Alexeenko A. Ab initio state-specific N2 + O dissociation and exchange modeling for molecular simulations // J. Chem. Phys. 2017. Vol. 146. P. 074303. 14. Esposito F., Armenise I. Reactive, inelastic and dissociation processes in collisions of atomic oxygen with molecular nitrogen // J. Phys. Chem. A. 2017. Vol. 121. Pp. 6211-6219. 15. E.V.Kustova and A.S.Savelev State-resolved models of chemical reactions for non-equilibrium flow simulations // 7th European Conference for Aeronautics and Aerospace Sciences (EUCASS). doi: 10.13009/EUCASS2017-111. 16. E. V. Kustova, A. S. Savelev, and O. V. Kunova Rate coefficients of exchange reactions accounting for vibrational excitation of reagents and products // AIP Conference Proceedings 1959, 060010 (2018); doi: 10.1063/1.5034671. 17. М. Ю. Погосбекян, А. Л. Сергиевская Моделирование реакции диссоциации кислорода в термически неравновесных условиях: модели, траекторные расчеты, эксперимент // Химическая физика, 2018, том 37, № 4, с. 20–31. DOI: 10.7868/S0207401X18040039. 18. I.V. Arsentiev, B.I. Loukhovitski, A.M. Starik Application of state-to-state approach in estimation of thermally nonequilibrium reaction rate constants in mode approximation // Chemical Physics 398 (2012) 73–80 19. Armenise, I.; Kustova, E. State-to-state Models for CO2 Molecules: from the Theory to an Application to Hypersonic Boundary Layers // Chem. Phys. 2013, 415, 269−281. 20. Armenise, I.; Kustova, E. Mechanisms of Coupled Vibrational Relaxation and Dissociation in Carbon Dioxide // J. Phys. Chem. A. 2018, 122, 5107−120. 21. Armenise, I.; Kustova, E. Effect of Asymmetric Mode on CO2 State-to-State Vibrational-Chemical Kinetics // J. Phys. Chem. A. 2018, 122, 5107−120. 22. Fridman, A. Plasma Chemistry; Cambridge University Press: New York, 2008. 23. Kozak, T.; Bogaerts, A. Splitting of CO2 by Vibrational Excitation in Non-equilibrium Plasmas: a Reaction Kinetics Model // Plasma Sources Sci. Technol. 2014, 23, 045004. 24. Berthelot, A.; Bogaerts, A. Modeling of CO2 Splitting in a Microwave Plasma: How to Improve the Conversion and Energy Efficiency // J. Phys. Chem. C 2017, 121, 8236−8251. 25. Silva, T.; Grofulović, M.; Klarenaar, B.; Morillo-Candas, A.; Guaitella, O.; Engeln, R.; Pintassilgo, C.; Guerra, V. Kinetic Study of Low-temperature CO2 Plasmas under Non-equilibrium Conditions. I. Relaxation of Vibrational Energy // Plasma Sources Sci. Technol. 2018, 27, 015019. 26. Park C., Howe J.T., Howe R.L. et al. Review of Chemical-Kinetic Problems of Future NASA Missions, II: Mars Entries // J. Thermophys. Heat Transfer. 1994. Vol. 8, no. 1. Pp. 9-23. 27. Kustova, E.; Nagnibeda, E. On a Correct Description of a Multitemperature Dissociating CO2 Flow // Chem. Phys. 2006, 321, 293−310. 28. Kosareva Alena and Nagnibeda Ekaterina Multi-temperature models for shock heated flows of CO2/CO/O mixture // 7th European Conference for Aeronautics and Aerospace Sciences (EUCASS). doi: 10.13009/EUCASS2017-222.