Potential development for alpha-boron and boron carbide




This work deals with grain sliding in alpha-boron and boron carbide. Molecular dynamic simulations are done with the potentials obtained during this work.

boron, boron carbide, interatomic potentials, molecular dynamics


Volume 16, issue 4, 2015 year


Построение потенциалов для альфа-бора и карбида бора

В работе представлено исследование межзеренного трения в альфа-боре и карбиде бора. Моделирование производилось с помощью потенциалов межатомого взаимодействия, которые были получены в рамках данной работы.

бор, карбид бора, межатомные потенциалы, молекулярная динамика


Volume 16, issue 4, 2015 year



1. Domnich V. et al. Boron carbide: structure, properties, and stability under stress //Journal of the American Ceramic Society. – 2011. – Т. 94. – № 11. – Pp. 3605-3628. http://onlinelibrary.wiley.com/doi/10.1111/j.1551-2916.2011.04865.x/full
2. Mishin Y., Mehl M. J., Papaconstantopoulos D. A. Phase stability in the Fe–Ni system: Investigation by first-principles calculations and atomistic simulations //Acta Materialia. – 2005. – Т. 53. – № 15. – Pp. 4029-4041. http://www.sciencedirect.com/science/article/pii/S1359645405002843
3. Daw M. S., Baskes M. I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals //Physical Review B. – 1984. – Т. 29. – № 12. – P. 6443. http://journals.aps.org/prb/abstract/10.1103/PhysRevB.29.6443
4. Pokatashkin P., Kuksin A., Yanilkin A. Angular dependent potential for α-boron and large-scale molecular dynamics simulations // Modelling and Simulation in Materials Science and Engineering. – 2015. – Т. 23. – № 4. – P. 045014. http://iopscience.iop.org/article/10.1088/0965-0393/23/4/045014
5. Brommer P., Gähler F. Potfit: effective potentials from ab initio data //Modelling and Simulation in Materials Science and Engineering. – 2007. – Т. 15. – № 3. – P. 295. http://iopscience.iop.org/article/10.1088/0965-0393/15/3/008/
6. Chen M., McCauley J. W., Hemker K. J. Shock-induced localized amorphization in boron carbide //Science. – 2003. – Т. 299. – № 5612. – Pp. 1563-1566. http://www.sciencemag.org/content/299/5612/1563.short
7. Ge D. et al. Structural damage in boron carbide under contact loading//Acta Materialia. – 2004. – Т. 52. – № 13. – Pp. 3921-3927. http://www.sciencedirect.com/science/article/pii/S1359645404002691
8. Ghosh D. et al. Influence of stress state and strain rate on structural amorphization in boron carbide //Journal of Applied Physics. – 2012. – Т. 111. – № 6. – P. 063523. http://scitation.aip.org/content/aip/journal/jap/111/6/10.1063/1.3696971
9. Reddy K.M. et al. Atomic structure of amorphous shear bands in boron carbide //Nature commu¬nications. – 2013. – Т. 4. http://www.nature.com/ncomms/2013/130919/ncomms3483/full/ncomms3483.html
10. Vogler T.J., Reinhart W.D., Chhabildas L.C. Dynamic behaviour of boron carbide //Journal of applied physics. – 2004. – Т. 95. – № 8. – Pp. 4173-4183. http://scitation.aip.org/content/aip/journal/jap/95/8/10.1063/1.1686902