Построение потенциалов для альфа-бора и карбида бора



Potential development for alpha-boron and boron carbide

This work deals with grain sliding in alpha-boron and boron carbide. Molecular dynamic simulations are done with the potentials obtained during this work.

boron, boron carbide, interatomic potentials, molecular dynamics


В работе представлено исследование межзеренного трения в альфа-боре и карбиде бора. Моделирование производилось с помощью потенциалов межатомого взаимодействия, которые были получены в рамках данной работы.

бор, карбид бора, межатомные потенциалы, молекулярная динамика


1. Domnich V. et al. Boron carbide: structure, properties, and stability under stress //Journal of the American Ceramic Society. – 2011. – Т. 94. – № 11. – Pp. 3605-3628. http://onlinelibrary.wiley.com/doi/10.1111/j.1551-2916.2011.04865.x/full
2. Mishin Y., Mehl M. J., Papaconstantopoulos D. A. Phase stability in the Fe–Ni system: Investigation by first-principles calculations and atomistic simulations //Acta Materialia. – 2005. – Т. 53. – № 15. – Pp. 4029-4041. http://www.sciencedirect.com/science/article/pii/S1359645405002843
3. Daw M. S., Baskes M. I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals //Physical Review B. – 1984. – Т. 29. – № 12. – P. 6443. http://journals.aps.org/prb/abstract/10.1103/PhysRevB.29.6443
4. Pokatashkin P., Kuksin A., Yanilkin A. Angular dependent potential for α-boron and large-scale molecular dynamics simulations // Modelling and Simulation in Materials Science and Engineering. – 2015. – Т. 23. – № 4. – P. 045014. http://iopscience.iop.org/article/10.1088/0965-0393/23/4/045014
5. Brommer P., Gähler F. Potfit: effective potentials from ab initio data //Modelling and Simulation in Materials Science and Engineering. – 2007. – Т. 15. – № 3. – P. 295. http://iopscience.iop.org/article/10.1088/0965-0393/15/3/008/
6. Chen M., McCauley J. W., Hemker K. J. Shock-induced localized amorphization in boron carbide //Science. – 2003. – Т. 299. – № 5612. – Pp. 1563-1566. http://www.sciencemag.org/content/299/5612/1563.short
7. Ge D. et al. Structural damage in boron carbide under contact loading//Acta Materialia. – 2004. – Т. 52. – № 13. – Pp. 3921-3927. http://www.sciencedirect.com/science/article/pii/S1359645404002691
8. Ghosh D. et al. Influence of stress state and strain rate on structural amorphization in boron carbide //Journal of Applied Physics. – 2012. – Т. 111. – № 6. – P. 063523. http://scitation.aip.org/content/aip/journal/jap/111/6/10.1063/1.3696971
9. Reddy K.M. et al. Atomic structure of amorphous shear bands in boron carbide //Nature commu¬nications. – 2013. – Т. 4. http://www.nature.com/ncomms/2013/130919/ncomms3483/full/ncomms3483.html
10. Vogler T.J., Reinhart W.D., Chhabildas L.C. Dynamic behaviour of boron carbide //Journal of applied physics. – 2004. – Т. 95. – № 8. – Pp. 4173-4183. http://scitation.aip.org/content/aip/journal/jap/95/8/10.1063/1.1686902